Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582787

RESUMO

In recent studies, we have established the unique adapter chimeric antigen receptor (CAR) platform RevCAR which uses, as an extracellular CAR domain, a peptide epitope instead of an antibody domain. RevCAR adapters (termed RevCAR target modules, RevTMs) are bispecific antibodies that enable the reversible ON/OFF switch of the RevCAR system, improving the safety compared to conventional CARs. Here, we describe for the first time its use for retargeting of both T and NK-92 cells. In addition, we describe the development and preclinical validation of a novel RevTM for targeting of the fibroblast growth factor-inducible 14 (Fn14) surface receptor which is overexpressed on Glioblastoma (GBM) cells, and therefore serves as a promising target for the treatment of GBM. The novel RevTM efficiently redirects RevCAR modified T and NK-92 cells and leads to the killing of GBM cells both in vitro and in vivo. Tumor cell killing is associated with increased IL-2, TNF-α and/or IFN-γ secretion. Hence, these findings give an insight into the complementary potential of both RevCAR T and NK-92 systems as a safe and specific immunotherapeutic approach against GBM.

2.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638268

RESUMO

Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA