Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(6): 1929-1933, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670652

RESUMO

Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.

2.
Phys Rev Lett ; 118(10): 107404, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339275

RESUMO

Croconic acid crystals show proton displacive-type ferroelectricity with a large spontaneous polarization reaching 20 µC/cm^{2}, which originates from the strong coupling of proton and π-electron degrees of freedom. Such a coupling makes us expect a large polarization change by photoirradiations. Optical-pump second-harmonic-generation-probe experiments reveal that a photoexcited croconic-acid crystal loses the ferroelectricity substantially with a maximum quantum efficiency of more than 30 molecules per one absorbed photon. Based on density functional calculations, we theoretically discuss possible pathways toward the formation of a one-dimensional domain with polarization inversion and its recovery process to the ground state by referring to the dynamics of experimentally obtained polarization changes.

3.
Sci Rep ; 6: 20571, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864779

RESUMO

In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA