RESUMO
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.
Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/fisiologia , Infecções por Enterovirus/virologia , Sítios Internos de Entrada Ribossomal , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Interações Hospedeiro-PatógenoRESUMO
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Ribonucleotídeos , Humanos , Antivirais/farmacologia , Exorribonucleases/metabolismo , Ribonucleotídeos/química , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Desenho de FármacosRESUMO
Virus spread at the single-cell level is largely uncharacterized. We have designed and constructed a microfluidic device in which each nanowell contained a single, infected cell (donor) and a single, uninfected cell (recipient). Using a GFP-expressing poliovirus as our model, we observed both lytic and non-lytic spread. Donor cells supporting lytic spread established infection earlier than those supporting non-lytic spread. However, non-lytic spread established infections in recipient cells substantially faster than lytic spread and yielded higher rates of genome replication. While lytic spread was sensitive to the presence of capsid entry/uncoating inhibitors, non-lytic spread was not. Consistent with emerging models for non-lytic spread of enteroviruses using autophagy, reduction of LC3 levels in cells impaired non-lytic spread and elevated the fraction of virus in donor cells spreading lytically. The ability to distinguish lytic and non-lytic spread unambiguously will enable discovery of viral and host factors and host pathways used for non-lytic spread of enteroviruses and other viruses as well.
RESUMO
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
RESUMO
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
RESUMO
Stochastic outcomes of viral infections are attributed in large part to multiple layers of intrinsic and extrinsic heterogeneity that exist within a population of cells and viruses. Traditional methods in virology often lack the ability to demonstrate cell-to-cell variability in response to the invasion of viruses, and to decipher the sources of heterogeneities that are reflected in the variable infection dynamics. To overcome this challenge, the field of single-cell virology emerged less than a decade ago, enabling researchers to reveal the behavior of single, isolated, infected cells that has been masked in population-based assays. The use of microfluidics in single-cell virology, in particular, has resulted in the development of high-throughput devices that are capable of capturing, isolating, and monitoring single infected cells over the duration of an infection. Results from the studies of viral infection dynamics presented in this chapter indicate how single-cell data provide a more accurate prediction of the start time, replication rate, duration, and yield of infection when compared to population-based data. Additionally, single-cell analysis reveals striking differences between genetically distinct viruses that are almost indistinguishable in population methods. Importantly, both the efficacy and distinct mechanisms of action of antiviral compounds can be elucidated by using single-cell analysis.
Assuntos
Análise de Célula Única , Vírus , Antivirais , MicrofluídicaRESUMO
Fluid manipulation in microfluidic systems is often controlled by active pumps that are relatively large in size and require external power sources which limit their portability and use in limited-resource settings. In this work, portable, detachable, low-cost, and power-free paper pumps with engineered capillary tubes (referred to as "grooves") that can passively drive viscous fluids based on capillary action are presented. The proposed grooved paper pumps are capable of generating a controllable flow of complex biofluids within microfluidic devices with minimal user intervention and no external power sources. The pumping performance of grooved paper pumps in this study is tested with undiluted, unseparated whole blood samples - demonstrating successful transport of approximately 150 µL of blood within an average time of 5 minutes to 50 minutes, depending on their design parameters. Results for the flow rate of grooved paper pumps indicate that the number of grooves created within the porous paper determines the profile of the generated flow rate. The experimental data also show that as the number of grooves in the pumps is increased, the flow rate approaches a constant value for the entire duration of pumping before the pump becomes saturated. The promising performance of grooved paper pumps with whole blood offers potential applications of these small, disposable pumps in point-of-care diagnostics in which time is crucial and access to external power is limited.