Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(45)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34728562

RESUMO

Flexible large bandgap dielectric materials exhibiting ultra-fast charging-discharging rates are key components for electrification under extremely high electric fields. A polyoxafluoronorbornene (m-POFNB) with fused five-membered rings separated by alkenes and flexible single bonds as the backbone, rather than conjugated aromatic structure typically for conventional high-temperature polymers, is designed to achieve simultaneously high thermal stability and large bandgap. In addition, an asymmetrically fluorinated aromatic pendant group extended from the fused bicyclic structure of the backbone imparts m-POFNB with enhanced dipolar relaxation and thus high dielectric constant without sacrificing the bandgap. m-POFNB thereby exhibits an unprecedentedly high discharged energy density of 7.44 J/cm3 and high efficiency at 150 °C. This work points to a strategy to break the paradox of mutually exclusive constraints between bandgap, dielectric constant, and thermal stability in the design of all-organic polymer dielectrics for harsh condition electrifications.

2.
Small ; 17(33): e2103161, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270880

RESUMO

Due to their electrically polarized air-filled internal pores, optimized ferroelectrets exhibit a remarkable piezoelectric response, making them suitable for energy harvesting. Expanded polytetrafluoroethylene (ePTFE) ferroelectret films are laminated with two fluorinated-ethylene-propylene (FEP) copolymer films and internally polarized by corona discharge. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-coated spandex fabric is employed for the electrodes to assemble an all-organic ferroelectret nanogenerator (FENG). The outer electret-plus-electrode double layers form active device layers with deformable electric dipoles that strongly contribute to the overall piezoelectric response in the proposed concept of wearable nanogenerators. Thus, the FENG with spandex electrodes generates a short-circuit current which is twice as high as that with aluminum electrodes. The stacking sequence spandex/FEP/ePTFE/FEP/ePTFE/FEP/spandex with an average pore size of 3 µm in the ePTFE films yields the best overall performance, which is also demonstrated by the displacement-versus-electric-field loop results. The all-organic FENGs are stable up to 90 °C and still perform well 9 months after being polarized. An optimized FENG makes three light emitting diodes (LEDs) blink twice with the energy generated during a single footstep. The new all-organic FENG can thus continuously power wearable electronic devices and is easily integrated, for example, with clothing, other textiles, or shoe insoles.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Eletricidade , Eletrodos , Polímeros
3.
Nat Mater ; 23(2): 163-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307973
4.
Macromol Rapid Commun ; 40(3): e1800679, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417467

RESUMO

Flexible films having high dielectric constants with low dielectric loss have promising application in the emerging area of high-energy-density materials. Here, for the first time, an organometallic, Sn-polyester-containing hybrid free-standing film in polyimide matrix is reported. Polyimide, pBTDA-HDA, is used with poly(dimethyltin glutarate) and poly(dimethyltin-3,3-dimethyglutarate) (pDMTDMG) for having a processable film with tunable dielectric properties. Hybrid film with 60% pDMTDMG and 40% PI (HB2) is found to have improved dielectric features over previously synthesized organic polyimide and organometallic Sn-polyester homopolymers. These novel organometallic-organic hybrid systems expanded a new area of dielectrics for next-generation electronics with superior overall electrical performance.


Assuntos
Eletricidade , Membranas Artificiais , Poliésteres/química , Resinas Sintéticas/química , Condutividade Elétrica , Eletrônica/instrumentação , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
5.
Macromol Rapid Commun ; 35(24): 2082-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25381737

RESUMO

High-dielectric constant materials are critical for numerous applications such as photovoltaics, photonics, transistors, and capacitors. There are numerous polymers used as dielectric layers in these applications but can suffer from having a low dielectric constant, small band gap, or ferroelectricity. Here, the structure-property relationship of various poly(dimethyltin esters) is described that look to enhance the dipolar and atomic polarization component of the dielectric constant. These polymers are also modeled using first principles calculations based on density functional theory (DFT) to predict such values as the total, electronic, and ionic dielectric constant as well as structure. A strong correlation is achieved between the theoretical and experimental values with the polymers exhibiting dielectric constants >4.5 with dissipation on the order of 10(-3) -10(-2) .


Assuntos
Ésteres/química , Hidrocarbonetos Aromáticos/química , Compostos Orgânicos de Estanho/química , Eletricidade , Polimerização , Difração de Raios X
6.
iScience ; 25(12): 105607, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36452909

RESUMO

All-organic, flexible, and body-compatible loudspeakers have become increasingly attractive for wearable electronics. Due to their remarkable piezoelectric response, ferroelectrets are suitable for loudspeakers. Two distinct kinds of ultrathin ferroelectrets, including cellular polypropylene films and expanded polytetrafluoroethylene (ePTFE) films, were combined with three different types of electrodes ((Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS))-coated fabrics, PEDOT:PSS direct coating, and sputter-coated Au/Pd) for study regarding their frequency-dependent sound intensity and radiation directivity. Among the loudspeakers investigated, the all-fabric loudspeakers with ePTFE ferroelectret and PEDOT:PSS-coated spandex electrodes have a higher frequency dependency. Loudspeakers equipped with PEDOT:PSS-coated spandex electrodes are less angle dependent compared to other loudspeakers evaluated. Moreover, the soft loudspeaker constituted of an all-organic FEP(fluorinated-ethylene-propylene)-ePTFE-based ferroelectret and PEDOT:PSS-coated fabrics presented in this paper is easy to integrate with clothes and has a higher thermal stability. It is naturally compatible with the human body and a competitive candidate for future developments of all-organic loudspeakers for wearable electronic systems.

7.
ACS Appl Mater Interfaces ; 14(38): 42804-42811, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112124

RESUMO

The legalization of hemp cultivation in the United States has caused the price of hemp-derived cannabinoids to decrease 10-fold within 2 years. Cannabidiol (CBD), one of many naturally occurring diols found in hemp, can be purified in high yield for low cost, making it an interesting candidate for polymer feedstock. In this study, two polyesters were synthesized from the condensation of either CBD or cannabigerol (CBG) with adipoyl chloride. Poly(CBD-Adipate) was cast into free-standing films and subjected to thermal, mechanical, and biological characterization. Poly(CBD-Adipate) films exhibited a lack of cytotoxicity toward adipose-derived stem cells while displaying an inherent antioxidant activity compared to poly(lactide) films. Additionally, this material was found to be semi-crystalline and able to be melt-processed into a plastic hemp leaf using a silicone baking mold.


Assuntos
Canabidiol , Canabinoides , Cannabis , Adipatos , Antioxidantes/farmacologia , Canabidiol/farmacologia , Canabinoides/farmacologia , Cannabis/química , Plásticos , Poliésteres/farmacologia , Polímeros , Silicones
8.
Phys Chem Chem Phys ; 13(11): 4888-94, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21212889

RESUMO

Electrochemical detection combined with nanostructured sensor surfaces offers potentially low-cost, high-throughput solutions for detection of clinically significant proteins. Inkjet printing offers an inexpensive non-contact fabrication method for microelectronics that is easily adapted for incorporating into protein immunosensor devices. Herein we report the first direct fabrication of inkjet-printed gold nanoparticle arrays, and apply them to electrochemical detection of the cancer biomarker interleukin-6 (IL-6) in serum. The gold nanoparticle ink was printed on a flexible, heat resistant polyimide Kapton substrate and subsequently sintered to create eight-electrode arrays costing <0.2 euro per array. The inkjet-printed working electrodes had reproducible surface areas with RSD <3%. Capture antibodies for IL-6 were linked onto the eight-electrode array, and used in sandwich immunoassays. A biotinylated secondary antibody with 16-18 horseradish peroxidase labels was used, and detection was achieved by hydroquinone-mediated amperometry. The arrays provided a clinically relevant detection limit of 20 pg mL(-1) in calf serum, sensitivity of 11.4 nA pg(-1) cm(-2), and a linear dynamic range of 20-400 pg mL(-1).


Assuntos
Biomarcadores Tumorais/sangue , Eletroquímica/instrumentação , Ouro/química , Imunoensaio/instrumentação , Interleucina-6/sangue , Plásticos/química , Impressão , Animais , Derivados de Benzeno/química , Bovinos , Temperatura Alta , Humanos , Tinta , Limite de Detecção , Nanopartículas Metálicas/química , Nanotecnologia , Polímeros/química
9.
Adv Mater ; 32(21): e2000499, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32249991

RESUMO

Flexible dielectrics operable under simultaneous electric and thermal extremes are critical to advanced electronics for ultrahigh densities and/or harsh conditions. However, conventional high-performance polymer dielectrics generally have conjugated aromatic backbones, leading to limited bandgaps and hence high conduction loss and poor energy densities, especially at elevated temperatures. A polyoxafluoronorbornene is reported, which has a key design feature in that it is a polyolefin consisting of repeating units of fairly rigid fused bicyclic structures and alkenes separated by freely rotating single bonds, endowing it with a large bandgap of ≈5 eV and flexibility, while being temperature-invariantly stable over -160 to 160 °C. At 150 °C, the polyoxafluoronorbornene exhibits an electrical conductivity two orders of magnitude lower than the best commercial high-temperature polymers, and features an unprecedented discharged energy density of 5.7 J cm-3 far outperforming the best reported flexible dielectrics. The design strategy uncovered in this work reveals a hitherto unexplored space for the design of scalable and efficient polymer dielectrics for electrical power and electronic systems under concurrent harsh electrical and thermal conditions.

10.
Langmuir ; 25(22): 13120-4, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19839619

RESUMO

We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
11.
Angew Chem Int Ed Engl ; 48(28): 5134-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19504507

RESUMO

A DNA spin-off: Electrospinning of DNA complexes gives nanofibers with a highly ordered morphology that allows homogeneous distribution of encapsulated multiple chromophores. The emission color can be controlled by suitable choice of the donor-acceptor pair and the doping ratio. Pure white-light emission from nanofibers is demonstrated (see picture).


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Nanoestruturas/química , Corantes Fluorescentes/química , Luminescência , Tensoativos/química
12.
ACS Appl Mater Interfaces ; 11(35): 32339-32345, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31408317

RESUMO

Highly conductive, metal-like poly(ethylene terephthalate) (PET) nonwoven fabric was prepared by coating poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) containing dimethyl sulfoxide (DMSO) onto PET nonwoven fabric previously coated with graphene/graphite. The sheet resistance of the original nonwoven fabric decreases from >80 MΩ□-1 to 1.1 Ω□-1 after coating with 10.7 wt % graphene and 5.48 wt % PEDOT:PSS with a maximum current at breakdown of 4 A. This sheet resistance is lower than previously reported sheet resistances of fabrics coated with graphene films, PEDOT:PSS films, or PEDOT:PSS coated fabrics from the literature. The effect of temperature on the resistance of graphene/PEDOT:PSS coated fabric has revealed that the resistance decreases with increasing temperature, analogous to semiconductors, with a clear semiconductor-metal transition occurring at 290 K. Finally, a coating of 18 wt % graphene/graphite and 2.5 wt % PEDOT:PSS (Rs = 5.5 Ω□-1) screen printed on the nonwoven fabric was shown to function as an electrode for electrocardiography without any hydrogel and with dry skin conditions. This composite coating finds application in wearable electronics for military and consumer sectors.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Eletrocardiografia , Polímeros , Têxteis , Adulto , Eletrodos , Humanos , Masculino
13.
Soft Matter ; 4(7): 1448-1453, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907111

RESUMO

Nanoscale fibers and non-woven meshes composed of DNA complexed with a cationic surfactant (cetyltrimethylammonium chloride, or CTMA) have been fabricated through electrospinning. The DNA-CTMA complex can be electrospun far more easily than DNA alone. Incorporation of a hemicyanine chromophore resulted in materials that demonstrated amplified emission as compared to thin films of identical composition. The enhanced fluorescence resulted from both the fiber morphology (5-6-fold amplification) and specific interactions (groove-binding) between the chromophore and DNA (18-21-fold amplification). The mechanical properties of freestanding electrospun non-woven fiber meshes were evaluated, and revealed stress-induced alignment of DNA strands within the DNA-CTMA fibers. These fiber-based materials are easily processable into a variety of morphologies, and have promise for applications in molecular electronics, filtration, sensors, and the medical industry.

14.
ACS Appl Mater Interfaces ; 9(43): 37524-37528, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020777

RESUMO

Electrocardiography (ECG) is an essential technique for analyzing and monitoring cardiovascular physiological conditions such as arrhythmia. This article demonstrates the integration of screen-printed ECG circuitry from a commercially available conducting polymer, PEDOT:PSS, onto commercially available finished textiles. ECG signals were recorded in dry skin conditions due to the ability of PEDOT:PSS to function as both ionic and electronic conductors. The signal amplifies when the skin transpires water vapor or by applying a common lotion on the skin. Finally, PEDOT:PSS wires connected to PEDOT:PSS electrodes have been shown to record ECG signals comparable to Ag/AgCl connected to copper wires.


Assuntos
Eletrodos , Eletrocardiografia , Polímeros , Impressão , Têxteis
15.
ACS Appl Mater Interfaces ; 8(40): 26998-27005, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27632390

RESUMO

Herein, the fabrication of all-organic conductive wires is demonstrated by utilizing patterning techniques such as inkjet printing and sponge stencil to apply poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) onto nonwoven polyethylene terephthalate (PET) fabric. The coating of the conducting polymer is only present on the surface of the substrate (penetration depth ∼ 200 µm) to retain the functionality and wearability of the textile. The wires fabricated by different patterning techniques provide a wide range of resistance, i.e., tens of kΩ/□ to less than 2 Ω/□ that allows the resistance to be tailored to a specific application. The sheet resistance is measured to be as low as 1.6 Ω/□, and the breakdown current is as high as 0.37 A for a 1 mm wide line. The specific breakdown current exceeds the previously reported values of macroscopic carbon nanotube based materials. Simple circuits composed of the printed wires are demonstrated, and resistance of the circuit from the measurement agrees with the calculated value based on Kirchhoff's rules. Additionally, the printed PEDOT:PSS wires show less than 6.2% change in sheet resistance after three washing and drying cycles using detergent.

16.
Adv Mater ; 28(30): 6277-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27167752

RESUMO

Although traditional materials discovery has historically benefited from intuition-driven experimental approaches and serendipity, computational strategies have risen in prominence and proven to be a powerful complement to experiments in the modern materials research environment. It is illustrated here how one may harness a rational co-design approach-involving synergies between high-throughput computational screening and experimental synthesis and testing-with the example of polymer dielectrics design for electrostatic energy storage applications. Recent co-design efforts that can potentially enable going beyond present-day "standard" polymer dielectrics (such as biaxially oriented polypropylene) are highlighted. These efforts have led to the identification of several new organic polymer dielectrics within known generic polymer subclasses (e.g., polyurea, polythiourea, polyimide), and the recognition of the untapped potential inherent in entirely new and unanticipated chemical subspaces offered by organometallic polymers. The challenges that remain and the need for additional methodological developments necessary to further strengthen the co-design concept are then presented.

17.
ACS Appl Mater Interfaces ; 8(33): 21270-7, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27467895

RESUMO

Recently, there has been a growing interest in developing wide band gap dielectric materials as the next generation insulators for capacitors, photovoltaic devices, and transistors. Organotin polyesters have shown promise as high dielectric constant, low loss, and high band gap materials. Guided by first-principles calculations from density functional theory (DFT), in line with the emerging codesign concept, the polymer poly(dimethyltin 3,3-dimethylglutarate), p(DMTDMG), was identified as a promising candidate for dielectric applications. Blends and copolymers of poly(dimethyltin suberate), p(DMTSub), and p(DMTDMG) were compared using increasing amounts of p(DMTSub) from 10% to 50% to find a balance between electronic properties and film morphology. DFT calculations were used to gain further insight into the structural and electronic differences between p(DMTSub) and p(DMTDMG). Both blend and copolymer systems showed improved results over the homopolymers with the films having dielectric constants of 6.8 and 6.7 at 10 kHz with losses of 1% and 2% for the blend and copolymer systems, respectively. The energy density of the film measured as a D-E hysteresis loop was 6 J/cc for the copolymer, showing an improvement compared to 4 J/cc for the blend. This improvement is hypothesized to come from a more uniform distribution of diacid repeat units in the copolymer compared to the blend, leading toward improved film quality and subsequently higher energy density.

18.
Adv Mater ; 27(2): 346-51, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25420940

RESUMO

Poly(dimethyltin glutarate) is presented as the first organometallic polymer, a high dielectric constant, and low dielectric loss material. Theoretical results correspond well in terms of the dielectric constant. More importantly, the dielectric constant can be tuned depending on the solvent a film of the polymer is cast from. The breakdown strength is increased through blending with a second organometallic polymer.

19.
Adv Mater ; 26(47): 8004-9, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25348495

RESUMO

A method to color-tune electrochromic devices through the use of theoretical calculations is demonstrated to achieve neutrality using only three monomers that form two distinct copolymers. These devices exhibit photopic contrasts up to ca. 38%, high neutrality, color uniformity, and switch speeds of less than 1 s. In addition, this method is used to fabricate a large-area flexible electrochromic device of 75 cm(2) , exceeding the size of small displays.

20.
Chem Commun (Camb) ; 50(60): 8167-70, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24927214

RESUMO

Herein, we present a facile, one-step method to color tune electrochromic devices (ECDs) that switch between two neutral colors via in situ electrochemical polymerization of electroactive monomers in the presence of a small molecule organic yellow dye using all commercially available materials. These devices exhibited photopic contrasts of ca. 30% without background correction when assembled on flexible PET-ITO substrates. In addition, devices exhibited switching speeds as low as 1 second, color uniformity, and stability. Large defect free ECDs of 100 cm(2) were fabricated exceeding the active switch area required for goggles, lenses, and small display applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA