Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Insects ; 14(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367345

RESUMO

Aedes aegypti is the principal vector of the arboviruses-yellow fever, dengue virus, chikungunya, and zika virus. Given the epidemiological importance of this mosquito, its capacity to adapt to different habitats, and its resistance to many types of control measures, systematic research into the genetic variability of the populations of this mosquito is one of the most important steps toward a better understanding of its population structure and vector competence. In this context, the present study verified the presence of distinct genetic lineages of Ae. aegypti in areas with high infestation rates, based on the analysis of microsatellite markers. The samples were collected in nine municipalities with high building infestation rates in the Mid-North region of Brazil. Six microsatellite loci were genotyped in the 138 samples, producing a total of 32 alleles, varying from one to nine alleles per locus in each of the different populations. The AMOVA revealed greater within-population genetic differentiation with high fixation rates. The general analysis of population structure, based on a Bayesian approach, revealed K = 2, with two Ae. aegypti lineages that were highly differentiated genetically. These data on the connectivity of the populations and the genetic isolation of the lineages provide important insights for the development of innovative strategies for the control of the populations of this important disease vector.

2.
Insects ; 14(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132611

RESUMO

Aedes aegypti is a mosquito native to the African continent, which is now widespread in the tropical and subtropical regions of the world. In many regions, it represents a major challenge to public health, given its role in the cycle of transmission of important arboviruses, such as Dengue, Zika, and Chikungunya. Considering the epidemiological importance of Ae. aegypti, the present study sequenced the partial mitochondrial genome of a sample collected in the municipality of Balsas, in the Brazilian state of Maranhão, followed by High Throughput Sequencing and phylogenetic analyses. The mitochondrial sequence obtained here was 15,863 bp long, and contained 37 functional subunits (thirteen PCGs, twenty-two tRNAs and two rRNAs) in addition to a partial final portion rich in A+T. The data obtained here contribute to the enrichment of our knowledge of the taxonomy and evolutionary biology of this prominent disease vector. These findings represent an important advancement in the understanding of the characteristics of the populations of northeastern Brazil and provide valuable insights into the taxonomy and evolutionary biology of this prominent disease vector.

3.
Rev. bras. entomol ; 61(1): 51-59, Jan.-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-843702

RESUMO

ABSTRACT Aedes (Stegomyia) aegypti is the vector responsible for the transmission of the viruses that cause zika, yellow and chikungunya fevers, the four dengue fever serotypes (DENV - 1, 2, 3, 4), and hemorrhagic dengue fever in tropical and subtropical regions around the world. The present study investigated the genetic differentiation of the 15 populations of this vector in the Brazilian state of Maranhão, based on the mitochondrial ND4 marker. A total of 177 sequences were obtained for Aedes aegypti, with a fragment of 337 bps, 15 haplotypes, 15 polymorphics sites, haplotype diversity of h = 0.6938, and nucleotide diversity of π = 0.01486. The neutrality tests (D and Fs) were not significant. The AMOVA revealed that most of the variation (58.47%) was found within populations, with FST = 0.41533 (p < 0.05). Possible isolation by distance was tested and a significant correlation coefficient (r = 0.3486; p = 0.0040) was found using the Mantel test. The phylogenetic relationships among the 15 haplotypes indicated the existence of two distinct clades. This finding, together with the population parameters, was consistent with a pattern of genetic structuring that underpinned the genetic differentiation of the study populations in Maranhão, and was characterized by the presence of distinct lineages of Aedes aegypti.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA