Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Biol ; 19(11): e3001431, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723964

RESUMO

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.


Assuntos
Adaptação Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Temperatura Alta , Lipídeos/química , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Temperatura Baixa , GMP Cíclico/metabolismo , Glicerofosfolipídeos/metabolismo , Fenótipo , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
2.
Rapid Commun Mass Spectrom ; : e9472, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652341

RESUMO

RATIONALE: The present work shows comprehensive chromatographic methods and MS conditions that have been developed based on the chemical properties of each lipid subclass to detect low-abundance molecular species. This study shows that the developed methods can detect low- and/or very-low-abundant lipids like phosphatidic acid (PA) in the glycerophospholipid (GP) method; dihydroceramide (dhCer) and dihydrosphingosine/sphinganine (dhSPB) in the sphingolipid (SP) method; and lysophosphatidic acid (LPA), LPI, LPG and sphingosine-1-phosphate (SPBP) in the lysolipid method. METHODS: An optimised method for the extraction of lysolipids in plasma is used in addition to Folch extraction. Then, four chromatographic methods coupled with mass spectrometry using targeted and untargeted approaches are described here. Three of the methods use a tertiary pumping system to enable the inclusion of a gradient for analyte separation (pumps A and B) and an isocratic wash (pump C). This wash solution elutes interfering compounds that could cause background signal in the subsequent injections, reducing column lifetime. RESULTS: Semi-quantitative values for 37 lipid subclasses are reported for a plasma sample (NIST SRM 1950). Furthermore, the methods presented here enabled the identification of 338 different lipid molecular species for GPs (mono- and diacyl-phospholipds), SPs, sterols and glycerolipids. The methods have been validated, and the reproducibility is presented here. CONCLUSIONS: The comprehensive analysis of the lipidome addressed here of glycerolipids, GPs, sterols and SPs is in good agreement with previously reported results, in the NIST SRM 1950 sample, by other laboratories. Ten lipid subclasses LPS, LPI, alkyl-lysophosphatidic acid/alkenyl-lysophosphatidic acid, alkyl-lysophosphatidylethanolamine/alkenyl-lysophosphatidylethanolamine, dhCer (d18:0), SPB (d18:1), dhSPB (d18:0) and SPBP (d18:2) have been detected using this comprehensive method and are uniquely reported here.

3.
Arch Biochem Biophys ; 646: 38-45, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580947

RESUMO

Lipids containing polyunsaturated fatty acids are primary targets of oxidation, which produces reactive short-chain aldehydes that can covalently modify proteins, a process called lipoxidation. Improved mass spectrometry (MS) methods for the analysis of these adducts in complex biological systems are needed. Lysozyme and human serum albumin (HSA) were used as model proteins to investigate lipoxidation products formed by two short-chain aldehydes, acrolein and pentanal, which are unsaturated and saturated aldehydes respectively. The adducts formed were stabilized by NaBH4 or NaBH3CN reduction and analysed by MS. Analysis of intact modified lysozyme showed a pentanal modification resulting from Schiff's base formation (+70 Da), and up to 8 acrolein adducts, all resulting from Michael addition (+58 Da). Analysis of tryptic digests identified specific histidine, cysteine and lysine residues modified in both lysozyme and HSA, and determined characteristic amino acid-specific fragmentations. Eight different internal fragment ions were found that could be used as general diagnostic ions for pentanal- and acrolein-modified amino acids. The combined use of intact protein analysis and LC-MS/MS methods provided a powerful tool for the identification and localization of aldehyde-protein adducts, and the diagnostic ions will facilitate the development of targeted MS methods for analysis of adducts in more complex samples.


Assuntos
Acroleína/química , Aldeídos/química , Muramidase/química , Fragmentos de Peptídeos/química , Albumina Sérica Humana/química , Cromatografia Líquida/métodos , Cisteína/química , Histidina/química , Humanos , Lisina/química , Oxirredução , Espectrometria de Massas em Tandem/métodos
4.
Chem Commun (Camb) ; 59(47): 7240-7242, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222285

RESUMO

We herein describe the cell-specific release of alcohol-containing payloads via a sulfatase-sensitive linker in antibody-drug conjugates (ADCs). The linker shows efficient sulfatase-mediated release and high stability in human and mouse plasma. In vitro evaluation demonstrates potent antigen dependent toxicity towards breast cancer cell lines.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Camundongos , Humanos , Imunoconjugados/farmacologia , Etanol , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Cells ; 11(20)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291074

RESUMO

Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.


Assuntos
Orelha Interna , Perda Auditiva , Animais , Pré-Escolar , Humanos , Camundongos , Orelha Interna/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Mutação/genética , Peroxinas/genética , Plasmalogênios
6.
Sci Rep ; 11(1): 13297, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168259

RESUMO

Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Cardiolipinas/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipidômica , Proteômica , Regulação para Cima
7.
Free Radic Biol Med ; 144: 223-233, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31173844

RESUMO

Pyruvate kinase catalyses the last step in glycolysis and has been suggested to contribute to the regulation of aerobic glycolysis in cancer cells. It can be inhibited by oxidation of cysteine residues in vitro and in vivo, which is relevant to the more pro-oxidant state in cancer and proliferating tissues. These conditions also favour lipid peroxidation and the formation of electrophilic fragmentation products, including short-chain aldehydes that can covalently modify proteins. However, as yet few studies have investigated their interactions with pyruvate kinase, so we investigated the effects of three different aldehydes, acrolein, malondialdehyde and 4-hydroxy-2(E)-hexenal (HHE), on the structure and activity of the enzyme. Analysis by LC-MS/MS showed unique modification profiles for each aldehyde, but Cys152, Cys423 and Cys474 were the residues most susceptible to electrophilic modification. Analysis of enzymatic activity under these conditions showed that acrolein was the strongest inhibitor, and at incubation times longer than 2 h, pathophysiological concentrations induced significant effects. Treatment of MCF-7 cells with the aldehydes caused similar losses of pyruvate kinase activity to those observed in vitro, and at lower concentrations than those required to cause cell death, with time and dose-dependent effects; acrolein adducts on Cys152 and Cys358 were detected. Cys358 and Cys474 are located at or near the allosteric or active sites, and formation of adducts on these residues probably contributes to loss of activity at low treatment concentrations. This study provides the first detailed analysis of the structure-activity relationship of C3 and C6 aldehydes with pyruvate kinase, and suggests that reactive short-chain aldehydes generated in diseases with an oxidative aetiology or from environmental exposure such as smoking could be involved in the metabolic alterations observed in cancer cells, through alteration of pyruvate kinase activity.


Assuntos
Acroleína/farmacologia , Aldeídos/farmacologia , Cisteína/química , Malondialdeído/farmacologia , Piruvato Quinase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biocatálise/efeitos dos fármacos , Cromatografia Líquida , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Ensaios Enzimáticos , Humanos , Cinética , Peroxidação de Lipídeos , Células MCF-7 , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Piruvato Quinase/isolamento & purificação , Piruvato Quinase/metabolismo , Coelhos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
8.
Free Radic Biol Med ; 144: 156-166, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31212065

RESUMO

Oxidized LDL (oxLDL) has been shown to play a crucial role in the onset and development of cardiovascular disorders. The study of oxLDL, as an initiator of inflammatory cascades, led to the discovery of a variety of oxidized phospholipids (oxPLs) responsible for pro-inflammatory actions. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is frequently used by the scientific community as a representative oxPL mixture to study the biological effects of oxidized lipids, due to the high abundance of PAPC in human tissues and the biological activities of oxidized arachidonic acids derivatives. Most studies focusing on oxPAPC effects rely on in-house prepared mixtures of oxidized species obtained by exposing PAPC to air oxidation. Here, we described a multi-laboratory evaluation of the compounds in oxPAPC by LC-MS/MS, focusing on the identification and relative quantification of the lipid peroxidation products (LPPs) formed. PAPC was air-oxidized in four laboratories using the same protocol for 0, 48, and 72 h. It was possible to identify 55 different LPPs with unique elemental composition and characterize different structural isomeric species within these. The study showed good intra-sample reproducibility and similar qualitative patterns of oxidation, as the most abundant LPPs were essentially the same between the four laboratories. However, there were substantial differences in the extent of oxidation, i.e. the amount of LPPs relative to unmodified PAPC, at specific time points. This shows the importance of characterizing air-oxidized PAPC preparations before using them for testing biological effects of oxidized lipids, and may explain some variability of effects reported in the literature.


Assuntos
Ar/análise , Ensaio de Proficiência Laboratorial/normas , Fosfatidilcolinas/isolamento & purificação , Terminologia como Assunto , Cromatografia de Fase Reversa , Europa (Continente) , Humanos , Peroxidação de Lipídeos , Variações Dependentes do Observador , Fosfatidilcolinas/química , Fosfatidilcolinas/classificação , Análise de Componente Principal , Reprodutibilidade dos Testes , Soluções , Espectrometria de Massas em Tandem
9.
Free Radic Biol Med ; 111: 294-308, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28192230

RESUMO

The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,ß-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,ß-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging. Nevertheless, evidence for the occurrence of lipid-derived aldehyde adducts in biological and clinical samples is building, and offers an exciting area of future research.


Assuntos
Aldeídos/química , Lactoglobulinas/metabolismo , Peroxidação de Lipídeos , Processamento de Proteína Pós-Traducional , Acroleína/química , Aldeídos/metabolismo , Animais , Humanos , Isoprostanos/química , Lactoglobulinas/química , Estresse Oxidativo
10.
Eur J Med Chem ; 121: 331-337, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27267003

RESUMO

Cinnamylideneacetophenones (CA) are an important group of α,ß,γ,δ-diunsaturated ketones that have been widely used in a variety of synthetic transformations. Biological studies concerning these compounds are scarce and refer mainly to antiviral and antibacterial evaluations. Curcumin (CR), a natural polyphenol, is a yellow pigment extracted from the plant Curcuma longa, which is one of the major spices used in the Indian culinary. It has been reported that CR has cancer chemopreventive properties in a range of animal models of chemical carcinogenesis, along with antioxidative and anti-inflammatory properties. Inspired by the biological activity shown by CR and their structural resemblance with CA, it was considered to study the ability of the latter molecules to inhibit lipid oxidation induced by the hydroxyl radical (Fenton reaction) by electrospray ionization (ESI) mass spectrometry (MS) using phosphatidylcholine (PC) liposomes as a model of cell membrane. Compound 4, holding a methylated hydroxy group in the position R(2), and CR showed similar effects in inhibiting lipid peroxidation. In the presence of 7, the extension of oxidation was higher than the one verified in all other compounds. Other methodologies, namely DPPH radical scavenging and oxygen radical absorption capacity (ORAC) assays, were performed to complement and clarify the results attained by oxidation of PC monitored by ESI-MS and to evaluate the antioxidant profile of compounds. For both assays, compound 7 showed to be rather efficient due to its specific structure. This derivative can form a quite stable allylic radical by abstraction of a hydrogen atom which accounts for these results.


Assuntos
Acetofenonas/química , Acetofenonas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fosfatidilcolinas/metabolismo , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA