Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(2): 75, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708387

RESUMO

Fungi of the genus Penicillium section Sclerotiora have as their main characteristic the presence of orange-pigmented mycelium, which is associated with sclerotiorin, a chlorinated secondary metabolite of the azaphilone subclass of polyketides. Sclerotiorin presents anti-diabetes, antioxidant, anti-inflammatory, anti-Alzheimer, antiviral, and antimicrobial activities, which has always attracted the attention of researchers worldwide. During our ongoing search for azaphilone-producing Amazonian fungi, the strain of Penicillium MMSRG-058 was isolated as an endophyte from the roots of Duguetia stelechantha and showed great capacity for producing sclerotiorin-like metabolites. Using multilocus phylogeny, this strain was identified as Penicillium meliponae. Moreover, based on the genome mining of this strain through the reverse approach, a cluster of putative biosynthetic genes (BGC) responsible for the biosynthesis of sclerotiorin-like metabolites (scl cluster) was identified. The knockout of the sclA (highly reducing PKS) and sclI (non-reducing PKS) genes resulted in mutants with loss of mycelial pigmentation and terminated the biosynthesis of sclerotiorin-like metabolites: geumsanol B, chlorogeumsanol B, 7-deacetylisochromophilone VI, isochromophilone VI, ochrephilone, isorotiorin, and sclerotiorin. Based on these results, a biosynthetic pathway was proposed considering the homology of BGC scl genes with the azaphilone BGCs that have already been functionally characterized.


Assuntos
Penicillium , Técnicas de Inativação de Genes , Penicillium/genética , Penicillium/metabolismo , Fungos/genética , Família Multigênica
2.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837841

RESUMO

Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA