Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Pharmacol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39051915

RESUMO

Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15th to the 22nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1ß) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1ß levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.

2.
Bioact Mater ; 29: 151-176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37502678

RESUMO

We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.

3.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290544

RESUMO

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Celulose/química , Emulsões/química , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Água/química
4.
J Coat Technol Res ; : 1-15, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37362951

RESUMO

Chitosan is a cationic polysaccharide with intrinsic antimicrobial properties that can be used as an ecological alternative to develop functional materials to inhibit the proliferation of microorganisms. This work evaluates chitosan nanocapsules (CNs) as a self-disinfecting agent to provide bactericidal activity on cotton fabrics (CF), using polyacrylate to bind the CNs on the CF surface. The fabrics were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle (CA), moisture retention, and antimicrobial tests against Escherichia coli and Bacillus subtilis. The FTIR results showed new peaks related to chitosan structure, indicating the adequate fixation of the CNs on the cotton fibers. SEM images corroborated the polyacrylate binder's efficient adhesion, connecting the CNs and the cotton fiber surface. The CF surface properties were considerably modified, while CN/polyacrylate coating promoted antibacterial activity against the B. subtilis (gram-positive bacteria) for the developed wipe, but they do not display bactericidal effects against E. coli (gram-negative bacteria). Supplementary Information: The online version contains supplementary material available at 10.1007/s11998-023-00761-y.

5.
Int J Biol Macromol ; 188: 628-638, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389394

RESUMO

Thermoplastic starch (TPS) films filled with chitosan nanocapsules (CN) containing essential oils (EO) were prepared aiming active packaging. Two different EOs were studied: Ho wood (H) and Cinnamon (C). Besides, different capsules concentrations were investigated (1, 3, and 5 wt%), and the films were evaluated by chemical structure, thermal stability, crystallinity, water vapor permeability, antimicrobial assays, and potential application for strawberry packaging. The TPS/CN-Ho wood films showed a strong interaction between chitosan-starch, mainly for 3 and 5 wt%, confirmed by XRD. The FT-Raman spectra of TPS/CN-Cinnamon film indicated that Cinnamon EO quickly migrated to starch films, probably due to the new crystal structure, named C-type, affecting the film's water permeability. The addition of 1 and 3 wt% CN loaded with Ho wood or Cinnamon EO to the films decreased the water permeability. 3 wt% CN was the optimum concentration to inhibit the Escherichia coli or Bacillus subtillis growth on the films, confirming their biological activity. The films' preservation properties were evaluated using strawberries, and films with 1 or 3 wt% loaded-CN could extend the strawberries' shelf life without fungi contamination. The developed TPS films can be used as active food packaging or other films for biomedical or pharmaceutical applications.


Assuntos
Plásticos Biodegradáveis/farmacologia , Quitosana/química , Armazenamento de Alimentos , Nanocápsulas/química , Plásticos Biodegradáveis/química , Quitosana/síntese química , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Frutas/normas , Testes de Sensibilidade Microbiana , Óleos Voláteis/síntese química , Óleos Voláteis/química , Amido/química
6.
Chemosphere ; 267: 129288, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352367

RESUMO

In this work, we prepared PU-composites with Australian palm residues (PR) in different contents (5, 10, 15, and 20 wt%) and granulometry (28 and 35 mesh) to improve the oil (crude oil and S500 Diesel) sorption capacity. The foams were characterized by life cycle assessment (LCA), scanning electron microscopy, oil sorption, desorption, and Langmuir, Freundlich, and Temkin sorption isotherms. LCA indicated that higher PR contents decreased the foam environmental impacts than the classical residue handling, indicating that 20 wt% PR is the better environmental option, independent of the residues granulometry. The PR incorporation into PU foams resulted in smaller pore sizes, with a higher number of homogeneous open-cells. The PU composites exhibited higher oil adsorption capacity than the pristine foam. The PU sample showed maximum absorption capability of 6.1 and 6.7 g g-1 for diesel S500 and crude oil, and the composites showed increased values of ∼18 g g-1 and ∼24 g g-1. The Langmuir model presented the best fit and predicted a maximum adsorption capacity of 30.39 and 25.57 g g-1 for PU-20% PR 28 and 35 mesh, respectively. The composites presented excellent reusability with PU-20% PR (28 mesh) and PU-20% PR (35 mesh), showing removal efficiency after 16 and 9 cycles, respectively. The results classify the developed foams as excellent materials to sorb spilled crude oil in marine accidents.


Assuntos
Petróleo , Adsorção , Austrália , Poliuretanos , Água do Mar
7.
Int J Biol Macromol ; 181: 112-124, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771541

RESUMO

Biopolymers are promising materials for water treatment applications due to their abundance, low cost, expandability, and chemical structure. In this work, gelatin hydrogels filled with cellulose in the form of pristine eucalyptus residues (PER) or treated eucalyptus residues (TER) were prepared for adsorption and chromium removal in contaminated water. PER is a lignocellulosic compound, with cellulose, hemicellulose, and lignin, while TER has cellulose as a major component. FT-Raman Spectroscopy and FTIR analysis confirmed the crosslink reaction with glutaraldehyde and indicated that fillers altered the gelatin molecular vibrations and formed new hydrogen bonds, impacting the hydrogels' crystalline structure. The hydrogen bond energy was altered by the cellulosic fillers' addition and resulted in higher thermal stability (~10 °C). Hydrogels presented a Fickian diffusion, where gelatin hydrogel showed the highest swelling ability (466%), and composites showed lower values with the filler content increase. The chromium adsorption capacity presented values between 12 and 13 mg/g, i.e., featuring an excellent removal capacity which is related with hydrogel crosslinked structure and fibers surface hydroxyl groups, highlighting gelatin hydrogel TER 5% with better removal capacity. The developed hydrogels were produced from biomacromolecules with low-cost and potential application in contaminated water.


Assuntos
Celulose/química , Cromo/isolamento & purificação , Gelatina/química , Hidrogéis/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Difusão , Eucalyptus/química , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termogravimetria , Água/química , Difração de Raios X
8.
Chemosphere ; 269: 128708, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33168282

RESUMO

This work aimed to prepare surfactant modified-PBAT (poly(butylene adipate-co-terephthalate)) sheets with superior properties to increase the PBAT applicability and be a possible solution for plastic disposal environmental problems. Three different surfactant contents (0, 1, 5, and 10 wt%) were investigated, and their effects on PBAT chemical structure, mechanical and morphological properties, wettability, and water absorption were investigated. Modified-PBAT samples showed high hydrogen bond coefficients (0.57) than the pristine PBAT (0.54), indicating an excellent electrostatic interaction between both components and the formation of a rigid hydrogen-bonded network, as confirmed by mechanical tests, where the elastic modulus values for PBAT and PBAT+10% surfactant were 44 and 60 MPa. SEM images and roughness measurements showed changes in PBAT morphology after surfactant addition, improving the roughness and wettability by the voids and polar groups presence, altering the water absorption (WA) behavior. The higher water affinity resulted in high water absorption for PBAT-10%S (17%) compared to the pristine PBAT (2%), which improves hydrolysis tendency, which is the initial step to biodegradation. Biodegradation results indicated that the roughness and WA behavior influenced the biodegradation rate, facilitating hydrolysis and microbial attack, and accelerating modified samples weight loss. Our results suggested developing a material with superior mechanical properties, mainly for PBAT-10%S, that can be applied in several applications, such as packaging and furniture. After discharge, it is not an environmental problem, being a biodegradable material with a green character.


Assuntos
Poliésteres , Tensoativos , Hidrólise , Água
9.
ACS Appl Nano Mater ; 4(12): 12949-12956, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556280

RESUMO

The successful development of multifunctional cotton fabrics with antimicrobial and antiviral activities is essential to prevent the proliferation of microorganisms and transmission of coronavirus virions today, especially with the emergence of new variants of SARS-CoV-2. In this work, we developed antimicrobial cotton fabrics with Ag/TiO2 nanoparticles synthesized via sonochemistry. Here, we show that more than 50% of infectious SARS-CoV-2 remain active after prolonged direct contact self-disinfecting materials capable of inhibiting the proliferation of Escherichia coli and Staphylococcus aureus. The findings bring several epidemiologic worries about using silver and TiO2 as self-disinfecting nanostructured agents to prevent coronavirus transmission.

10.
Int J Biol Macromol ; 140: 33-42, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421171

RESUMO

Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues were synthesized via free-radical reaction aiming to controlled phosphorus release. All hydrogels were characterized by swelling kinetics (SK), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-Ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical assays (MA). The water and solute transports through the hydrophilic three-dimensional networks of the hydrogels occur preferably by diffusion processes and macromolecular relaxation. Hemicellulose, lignin and cellulose fibers contained in eucalyptus and pinus residues affected the crosslinking density, crystalline structure, and water/solute diffusion due to reduction of free hydroxyl and amine groups in the hydrogel networks. Hence, the eucalyptus and pinus residues improved the mechanical and thermal resistances of the composite hydrogels. Finally, the Arabic gum-based hydrogel and Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues demonstrated to be excellent alternatives for the controlled phosphorus release in agricultural nutrient-poor soils.


Assuntos
Eucalyptus/química , Goma Arábica/química , Hidrogéis/química , Pinus/química , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA