Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 296(2): 465-71, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16359695

RESUMO

The adsorption isotherms of Cr(VI) on kaolinite, montmorillonite, and alumina were adequately treated with Langmuir model showing behavior characteristic of single-layer adsorption. The efficiency of the adsorbents in removing Cr(VI) from water follows the order alumina > kaolinite > montmorillonite > silica. Speciation studies indicate that hydrogen chromate ions were the major adsorbed species and simultaneous adsorption of dichromate ion occurred at concentrations greater than approximately 10(-3) mol L(-1). It is most probable that the mechanism of adsorption of the hydrogen chromate ion at the surface of alumina is predominantly electrostatic adsorption, with outer sphere complex formation.

2.
Environ Toxicol Chem ; 29(11): 2426-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20862753

RESUMO

The sorption kinetics of methylene blue (MB), a standard compound in the American Society for Testing and Materials tests, on natural sand in a batch system at a reciprocal shaking speed of 120 rpm is fast, with equilibrium and surface coverage attained in minutes. When the same experiment is carried out in a recirculating flume, adsorption is much slower, with lifetimes increasing up to several months in the flume. Sorption retardation is dependent on the diffusion coefficient of the dye and on the depth of penetration of the MB layer in sand. The experimental results suggest that, in field experiments, formation of thin films dramatically inhibits the sorption kinetics and, in a closed system, such as a lake or reservoir, contaminants will remain in the water column for long periods, with very slow penetration in the sediment layer. In rivers, the contaminant will travel farther with less penetration into the sediment layer, compared to more static systems.


Assuntos
Azul de Metileno/química , Dióxido de Silício/química , Movimentos da Água , Água/química , Adsorção , Difusão , Cinética , Membranas Artificiais , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA