Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834016

RESUMO

Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Antiprotozoários , Quercetina/análogos & derivados , Acetilação , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Quercetina/síntese química , Quercetina/química , Quercetina/farmacologia
2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145370

RESUMO

Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA