Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Org Chem ; 85(19): 12614-12634, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876447

RESUMO

An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.


Assuntos
Corantes Fluorescentes , Tiadiazóis , Cinética , Espectrometria de Fluorescência
2.
Nanomaterials (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36234641

RESUMO

This work presents a long-term follow-up (300 days) of rats after a single intravenous injection of DMSA-coated magnetite nanoparticles (DMSA-MNP). The animals were systematically evaluated by hematological, biochemical, and ultrasound examinations, monitoring the same animal over time. In addition, oxidative stress evaluation, DMSA-MNP biodistribution, computerized tomography for ex vivo organs, and histopathology analysis were performed at the end of the experiment period. Overall, DMSA-MNP administration did not cause serious damage to the rats' health over the course of 300 days post-administration. All animals presented hematological parameters within the normal limits, and no alterations on serum creatinine, urea, ALT, and AST were related to DMSA-MNP administration. Liver and spleen showed no important alterations in any of the examinations. The kidneys of treated animals displayed intermittent pelvis dilation at ultrasound analysis, but without damage to the organ parenchyma after 300 days. The lungs of treated animals presented a light interalveolar septal thickening, but the animals did not present any clinical respiratory symptom. Nanoparticles were not detected in the vital organs of treated animals 300 days after administration. This work represents the first assessment of the long-term effects of DMSA-MNP and goes a step further on the safety of its use for biomedical applications.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500883

RESUMO

Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages­J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.

4.
Pharmaceutics ; 13(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575541

RESUMO

Controlling populations of free-roaming dogs and cats poses a huge challenge worldwide. Non-surgical neutering strategies for male animals have been long pursued, but the implementation of the procedures developed has remained limited to date. As submitting the testes to high temperatures impairs spermatogenesis, the present study investigated localized application of magnetic nanoparticle hyperthermia (MNH) to the testicles as a potential non-surgical sterilization method for animals. An intratesticular injection of a magnetic fluid composed of manganese-ferrite nanoparticles functionalized with citrate was administered followed by testicle exposure to an alternate magnetic field to generate localized heat. Testicular MNH was highly effective, causing progressive seminiferous tubule degeneration followed by substitution of the parenchyma with stromal tissue and gonadal atrophy, suggesting an irreversible process with few side effects to general animal health.

5.
J Inorg Biochem ; 204: 110949, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810044

RESUMO

The current work reports a joint experimental and theoretical study of a novel Cu(II) complex [CuL(µ-CH3COO)]2, based on 2-acetylpyridine-benzoylhydrazone ligand (HL). The two Cu(II) atoms are five-coordinated, consisting of three NNO-donor atoms from the hidrazone ligand connected by acetate bridges. In addition to the structural analysis, the complete characterization includes magnetic susceptibility, elemental analysis, FT-IR and UV-Vis. Two different approaches of Density Functional Theory (DFT) with localized basis set and plane waves were performed. The theoretical calculations were used to optimize the complex geometry of the new structure allowing a better understanding of its spectroscopic properties with insights of most important interactions. Thereunto, we made a comparison between the following functionals: B3LYP, PBE1PBE, B3PW91, ω-B97XD, M06 (hybrids), CAM-B3LYP (long range hybrid), and B97-d (pure), using localized basis set, and for plane waves we used the PW91 functional. Considering the expected antifungal and antibacterial activity of hydrazone derivative ligand, the antimicrobial activity of HL and the complex [CuL(µ-CH3COO)]2 was tested against pathogenic Gram-positive and Gram-negative bacteria and fungi. The synthesized new structure of hydrazone complexed with copper (II) shows antimicrobial activity, and magnetic susceptibility results indicate weak antiferromagnetic coupling between the copper atoms.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/química , Fungos/efeitos dos fármacos , Hidrazonas/química , Anti-Infecciosos/química , Complexos de Coordenação/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Int J Pharm ; 587: 119709, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32739394

RESUMO

In the present study, iron oxide nanoparticles, in the form of maghemite core coated with lauric acid (ION), were synthesized and loaded with finasteride (FIN) or dutasteride (DUT) as a novel drug delivery system for the topical treatment of alopecia. Additionally, developed formulations (FIN-ION and DUT-ION) were completely elaborated with components involved in the follicle metabolism, i.e., lauric acid, which acts as a 5α-reductase inhibitor, and iron which deficiency has been related to hair loss aggravation. Stability assessment conducted over the course of 90 days showed they are highly stable, with pH 7.4, constant EE% (>99%), and practically unchanged particle size and zeta potential. Besides drug distribution, the actual number of iron oxide nanoparticles, through a newly developed method using ferromagnetic resonance, was determined in each skin layer following permeation experiments. Despite the same donor concentration of colloids, nanoparticle distribution in the skin varied according to the loaded molecule. While DUT did not interfere with the nanoparticle natural tendency to accumulate within the hair follicle shafts, FIN presence hampered nanosystem interaction with the skin. Still, both formulations provided a higher skin drug penetration, compared to each respective control solution. Additionally, iron nanocarriers present a desirable visual characteristic, as the dark color aspect might instantly help disguise scarce hair follicle areas. These findings suggest the nanoformulations are highly promising for alopecia therapies.


Assuntos
Alopecia , Finasterida , Inibidores de 5-alfa Redutase , Alopecia/tratamento farmacológico , Dutasterida , Compostos Férricos , Humanos
7.
ChemSusChem ; 13(20): 5580-5585, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33448661

RESUMO

Unprecedented metal-free photocatalytic CO2 conversion to CO (up to 228±48 µmol g-1 h-1) was displayed by TiO2@IL hybrid photocatalysts prepared by simple impregnation of commercially available P25-titanium dioxide with imidazolium-based ionic liquids (ILs). The high activity of TiO2@IL hybrid photocatalysts was mainly associated to (i) TiO2@IL red shift compared to the pure TiO2 absorption, and thus a modification of the TiO2 surface electronic structure; (ii) TiO2 with IL bearing imidazolate anions lowered the CO2 activation energy barrier. The reaction mechanism was postulated to occur via CO2 photoreduction to formate species by the imidazole/imidazole radical redox pair, yielding CO and water.

8.
Front Mol Neurosci ; 12: 307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920538

RESUMO

Cytoglobin (Cygb) is a hexacoordinate protein, associated with the transport of oxygen, nitric oxide scavenging, tumor suppression and protection against oxidative stress and inflammation. This protein is expressed in brain areas including the preoptic area (POA) of the anterior hypothalamus, the region responsible for the regulation of body temperature. In this study, we show that Cygb is upregulated in the rat hypothalamus 2.5 h and 5 h after intravenous administration of lipopolysaccharide (LPS). We investigated the effect of treatment with Cygb in POA primary cultures stimulated with LPS for 4 h. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were measured and the results showed that Cygb reduced the concentrations of both cytokines. We further observed a decrease in immunoreactivity of the inflammatory transcription factor nuclear factor-κB (NF-κB), but not NF-IL6 and STAT3, in the nucleus of Cygb-treated POA cells. These findings suggest that Cygb attenuates the secretion of IL-6 and TNF-α in LPS-stimulated POA primary cultures via inhibition of the NF-κB signaling pathway, indicating that this protein might play an important role in the control of neuroinflammation and fever.

9.
ChemSusChem ; 12(5): 1011-1016, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663845

RESUMO

The simple photolysis of CO2 in aqueous solutions to generate CO and/or hydrocarbons and derivatives in the presence of a catalyst is considered to be a clean and efficient approach for utilizing CO2 as a C1 building block. Despite the huge efforts dedicated to this transformation using either semiconductors or homogeneous catalysts, only small improvements of the catalytic activity have been achieved so far. This article reports that simple aqueous solutions of organic salts-denominated as ionic liquids-can efficiently photo-reduce CO2 to CO without using photosensitizers or sacrificial agents. The system relies on the formation of the [CO2 ].- intermediate through homolytic C-C bond cleavage in a cation-CO2 adduct of imidazolium-based ionic liquids (ILs). The system continuously produced CO up to 2.88 mmol g-1 of IL after 40 h of irradiation by using an aqueous solution of 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIm.CO2 ) IL, representing an apparent quantum yield of 3.9 %. The organophotocatalytic principles of our system may help to develop more simple and efficient organic materials for the production of solar fuels from CO2 under mild conditions, which represents a real alternative to those based on semiconductors and homogeneous metal-based catalysts.

10.
Free Radic Res ; 52(3): 351-361, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29308684

RESUMO

Fever is a regulated increase in body temperature and a component of the acute-phase response, triggered mainly after the invasion of pathogens in the body. Reactive oxygen species (ROS) are generated during the physiological and pathological processes, and can act as both signalling molecules as well as promoters of oxidative stress. Male Wistar rats, pretreated with oral doses of acetaminophen, celecoxib, dipyrone, or ibuprofen 30 min before an intravenous lipopolysaccharide (LPS) or sterile saline injection, showed a reduced febrile response in all animals tested. The formation of ROS in the fresh blood, liver, brown adipose tissue (BAT), and hypothalamus of febrile and antipyretic-treated animals was assessed by electron paramagnetic resonance using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH). While the CM• concentrations remained unaltered in the blood samples examined 5 h after the induction of fever, we found increased CM• levels in the liver (in µM, saline: 290 ± 42; LPS: 512 ± 34), BAT (in µM, saline: 509 ± 79, LPS: 855 ± 79), and hypothalamus (in µM, saline: 292 ± 35; LPS: 467 ± 8) at the same time point. Importantly, none of the antipyretics were seen to alter the CM• accumulation profile. Data from this study suggest that there is an increased formation of ROS in the different tissues during fever, which may cause oxidative stress, and that the antipyretics tested do not interfere with ROS production.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Febre/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Espécies Reativas de Oxigênio/sangue , Animais , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
11.
Eur J Pharm Biopharm ; 103: 23-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27018329

RESUMO

Phthalocyanine derivatives comprise the second generation of photosensitizer molecules employed in photodynamic therapy (PDT) and have attracted much attention due to their outstanding photosensitizing performance. Most phthalocyanines are hydrophobic compounds that require association to drug delivery systems for clinical use. In this study, formulations of Pluronic F127 micelles incorporated with chloroaluminum phthalocyanine, or else F127/AlClPc, were produced at optimized conditions aiming at efficient and biocompatible PDT colloidal systems. Absorption/emission spectroscopies, as well as dynamic light scattering were performed to evaluate the optimum conditions for the F127 micelle formation and AlClPc incorporation. The micelles formation was attained with F127 concentrations ranging from 50 to 150mgmL(-1). At these conditions, AlClPc photosensitizer molecules were encapsulated into the hydrophobic micelle core and, therefore, readily solubilized in physiological medium (PBS pH 7.2). Encapsulation efficiency of about 90% resulted from different AlClPc concentrations. Identification of singlet oxygen production by irradiated F127/AlClPc formulations indicated good applicability for PDT. In vitro tests conducted with A549 human lung carcinoma cell line incubated with the F127/AlClPc formulations, at different AlClPc loadings, followed by only 18min of light irradiation (660nm LED, fluence of 25.3J/cm(2)), showed a cellular damage as high as 90% for rather low dosages of AlClPc (0.1-5.0µgmL(-1)). Further, no cytotoxicity occurred on non-irradiated cells. These findings suggest those F127/AlClPc formulations are highly promising for PDT applications, since they are easily prepared and the incubation and irradiation times are significantly shortened.


Assuntos
Coloides/química , Indóis/química , Micelas , Compostos Organometálicos/química , Fotoquimioterapia
12.
Protein Pept Lett ; 23(2): 142-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26631175

RESUMO

Polymorphonuclear neutrophils are the main cells of the innate immunity inflammatory response. Several factors can activate or stimulate neutrophils, including platelet-activating factor (PAF), a lipid mediator. Some authors consider the activation induced by PAF priming because it triggers limited production of reactive oxygen species (ROS) and it amplifies the response of the cell to a subsequent activator. The stimulation is reversible, which is critical for modulating the inflammatory response. Exacerbated inflammatory responses lead to serious diseases, such as systemic inflammatory response syndrome (SIRS), among others. Characterizing the stimulation of neutrophils during the possible reversion or prevention of an exaggerated inflammatory response is critical for the development of control strategies. In this study, a proteomic approach was used to identify 36 proteins that differ in abundance between quiescent neutrophils and PAFstimulated neutrophils. The identified proteins were associated with increased DNA repair processes, calcium flux, protein transcription, cytoskeleton alterations that facilitate migration and degranulation, and the release of proinflammatory cytokines and proteins that modulate the inflammatory response. Some of the identified proteins have not been previously reported in neutrophils.


Assuntos
Inflamação/genética , Fator de Ativação de Plaquetas/metabolismo , Proteômica , Síndrome de Resposta Inflamatória Sistêmica/genética , Citocinas/biossíntese , Humanos , Inflamação/patologia , Espectrometria de Massas , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator de Ativação de Plaquetas/farmacologia , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia
13.
J Colloid Interface Sci ; 289(1): 63-70, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16009218

RESUMO

The structural and magnetic properties of powdered composites consisting of nanosized Fe and Co particles embedded in alumina grains have been investigated. The composites were synthesized by a novel and simple method using co-precipitation from a hybrid gel solution containing layered double hydroxide and aluminium hydroxide. After a vacuum annealing procedure, the Fe composites have a negligible number of Fe(+3) ions and a high concentration of crystalline alpha-Fe nanoparticles having truncated polyhedron shapes with an average diameter of 20 nm that are physically well separated from each other. Magnetization measurements as a function of temperature revealed a superparamagnetic-like behavior characteristic of an assembly of fine particles. A spurious ferromagnetism related to surface interaction between magnetic particles from different powder grains and the formation mechanism of the composites are also discussed.


Assuntos
Óxido de Alumínio/química , Cobalto/química , Ferro/química , Magnetismo , Nanopartículas/química , Óxido de Alumínio/síntese química , Cristalização , Tamanho da Partícula , Pós/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA