Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 133(7): 1214-27, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585355

RESUMO

Hedgehog (Hh) plays crucial roles in tissue-patterning and activates signaling in Patched (Ptc)-expressing cells. Paracrine signaling requires release and transport over many cell diameters away by a process that requires interaction with heparan sulfate proteoglycans (HSPGs). Here, we examine the organization of functional, fluorescently tagged variants in living cells by using optical imaging, FRET microscopy, and mutational studies guided by bioinformatics prediction. We find that cell-surface Hh forms suboptical oligomers, further concentrated in visible clusters colocalized with HSPGs. Mutation of a conserved Lys in a predicted Hh-protomer interaction interface results in an autocrine signaling-competent Hh isoform--incapable of forming dense nanoscale oligomers, interacting with HSPGs, or paracrine signaling. Thus, Hh exhibits a hierarchical organization from the nanoscale to visible clusters with distinct functions.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Animais , Padronização Corporal , Membrana Celular/química , Membrana Celular/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/embriologia , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Proteins ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865821

RESUMO

N-acetylglucosamine 6-phosphate deacetylase (NagA) catalyzes the conversion of N-acetylglucosamine-6-phosphate to glucosamine-6-phosphate in amino sugar catabolism. This conversion is an essential step in the catabolism of sialic acid in several pathogenic bacteria, including Pasteurella multocida, and thus NagA is identified as a potential drug target. Here, we report the unique structural features of NagA from P. multocida (PmNagA) resolved to 1.95 Å. PmNagA displays an altered quaternary architecture with unique interface interactions compared to its close homolog, the Escherichia coli NagA (EcNagA). We confirmed that the altered quaternary structure is not a crystallographic artifact using single particle electron cryo-microscopy. Analysis of the determined crystal structure reveals a set of hot-spot residues involved in novel interactions at the dimer-dimer interface. PmNagA binds to one Zn2+ ion in the active site and demonstrates kinetic parameters comparable to other bacterial homologs. Kinetic studies reveal that at high substrate concentrations (~10-fold the KM ), the tetrameric PmNagA displays hysteresis similar to its distant neighbor, the dimeric Staphylococcus aureus NagA (SaNagA). Our findings provide key information on structural and functional properties of NagA in P. multocida that could be utilized to design novel antibacterials.

3.
Plant Cell Physiol ; 61(7): 1321-1334, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379873

RESUMO

HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Oócitos/metabolismo , Organismos Geneticamente Modificados , Oryza/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus , Xilema/metabolismo
4.
BMC Genomics ; 20(1): 403, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117939

RESUMO

The repertoire of RNA-binding proteins (RBPs) in bacteria play a crucial role in their survival, and interactions with the host machinery, but there is little information, record or characterisation in bacterial genomes. As a first step towards this, we have chosen the bacterial model system Escherichia coli, and organised all RBPs in this organism into a comprehensive database named EcRBPome. It contains RBPs recorded from 614 complete E. coli proteomes available in the RefSeq database (as of October 2018). The database provides various features related to the E. coli RBPs, like their domain architectures, PDB structures, GO and EC annotations etc. It provides the assembly, bioproject and biosample details of each strain, as well as cross-strain comparison of occurrences of various RNA-binding domains (RBDs). The percentage of RBPs, the abundance of the various RBDs harboured by each strain have been graphically represented in this database and available alongside other files for user download. To the best of our knowledge, this is the first database of its kind and we hope that it will be of great use to the biological community.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteoma , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética
5.
Nucleic Acids Res ; 44(D1): D410-4, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26553811

RESUMO

Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ontologia Genética , Proteínas/química , Proteínas/classificação , Proteínas/genética
6.
Nucleic Acids Res ; 40(Database issue): D531-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123743

RESUMO

Accurate structure-based sequence alignments of distantly related proteins are crucial in gaining insight about protein domains that belong to a superfamily. The PASS2 database provides alignments of proteins related at the superfamily level and are characterized by low sequence identity. We thus report an automated, updated version of the superfamily alignment database known as PASS2.4, consisting of 1961 superfamilies and 10,569 protein domains, which is in direct correspondence with SCOP (1.75) database. Database organization, improved methods for efficient structure-based sequence alignments and the analysis of extreme distantly related proteins within superfamilies formed the focus of this update. Alignment of family-specific functional residues can be realized using such alignments and is shown using one superfamily as an example. The database of alignments and other related features can be accessed at http://caps.ncbs.res.in/pass2/.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas/classificação , Riboflavina Sintase/química
7.
Curr Res Struct Biol ; 5: 100097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911652

RESUMO

Toll like receptors (TLRs) play a pivotal role in innate and adaptive immunity. There are 10 TLRs in the human genome, of which TLR10 is the least characterized. Genetic polymorphism of TLR10 has been shown to be associated with multiple diseases including tuberculosis and rheumatoid arthritis. TLR10 consists of an extracellular domain (ECD), a single-pass transmembrane (TM) helix and intracellular TIR (Toll/Interleukin-1 receptor) domain. ECD is employed for ligand recognition and the intracellular domain interacts with other TIR domain-containing adapter proteins for signal transduction. Experimental structure of ECD or TM domain is not available for TLR10. In this study, we have modelled multiple forms of TLR10-ECD dimers, such as closed and open forms, starting from available structures of homologues. Subsequently, multiple full-length TLR10 homodimer models were generated by utilizing homology modelling and protein-protein docking. The dynamics of these models in membrane-aqueous environment revealed the global motion of ECD and TIR domain towards membrane bilayer. The TIR domain residues exhibited high root mean square fluctuation compared to ECD. The 'closed form' model was observed to be energetically more favorable than 'open form' model. The evaluation of persistent interchain interactions, along with their conservation score, unveiled critical residues for each model. Further, the binding of dsRNA to TLR10 was modelled by defined and blind docking approaches. Differential binding of dsRNA to the protomers of TLR10 was observed upon simulation that could provide clues on ligand disassociation. Dynamic network analysis revealed that the 'open form' model can be the functional form while 'closed form' model can be the apo form of TLR10.

8.
Comput Struct Biotechnol J ; 21: 2204-2214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013002

RESUMO

Odorant receptors (ORs) are important class of proteins involved in olfactory behaviour of insects. These are GPCR-like heptahelical transmembrane proteins with inverted topology compared to GPCR and require a co-receptor (ORco) for their function. OR function can be modulated through small molecules and negative modulation can be beneficial in case of disease vectors like Aedes aegypti. OR4 of A. aegypti is implicated in host recognition through human odour. Aedes aegypti is a vector for viruses that spread diseases like dengue, Zika and Chikungunya. In this study, we have attempted to model the full-length structure of OR4 and the ORco of A. aegypti due to lack of experimental structure. Further, we have screened a library of natural compounds (>0.3 million) along with known repellent molecules against ORco and OR4. Many natural compounds, including those from plants like Ocimum tenuiflorum (Holy Basil) and Piper nigrum (Black pepper), were found to have better binding affinity towards ORco compared to known repellents like DEET providing an alternative to existing repellent molecules. For specific inhibitor of OR4, several natural compounds (including those from plant like Mulberry) were identified. Further, we have utilized multiple docking approaches and conservation analysis to understand the interaction between OR4 and ORco. It was observed that the residues from the seventh transmembrane helix of OR4 and pore forming helix of ORco could play an important role along with known intracellular loop 3 residues in mediating the heteromer formation of OR and ORco.

9.
Front Genet ; 14: 1134509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065494

RESUMO

One of the key proteins that are present in the Z-disc of cardiac tissues, CSRP3, has been implicated in dilated and hypertrophic cardiomyopathy leading to heart failure. Although multiple cardiomyopathy-related mutations have been reported to reside on the two LIM domains and the disordered regions connecting the domains in this protein, the exact role of the disordered linker region is not clear. The linker harbors a few post-translational modification sites and is expected to be a regulatory site. We have carried out evolutionary studies on 5614 homologs spanning across taxa. We also performed molecular dynamics simulations of full-length CSRP3 to show that the length variations and conformational flexibility of the disordered linker could provide additional levels of functional modulation. Finally, we show that the CSRP3 homologs with widely different lengths of the linker regions could display diversity in their functional specifications. The present study provides a useful perspective to our understanding of the evolution of the disordered region between CSRP3 LIM domains.

10.
Comput Struct Biotechnol J ; 21: 3680-3689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576745

RESUMO

Toll-like receptors (TLRs) are pattern recognition receptors present on the surface of cells playing a crucial role in innate immunity. One of the TLRs, TLR4, recognizes LPS (Lipopolysaccharide) as its ligand leading to the release of anti-inflammatory mediators as well as pro-inflammatory cytokines through signal transduction and domain recruitment. TLR4 homodimerizes at its intracellular TIR (Toll/interleukin-1 receptor) domain that helps in the recruitment of the TRAM/TICAM2 (TIR domain-containing adaptor molecule 2) molecule. TRAM also contains TIR domain which in turn, dimerizes and functions as an adapter protein to further recruit TRIF/TICAM1 (TIR domain-containing adaptor molecule 1) protein for mediating downstream signaling. Apart from LPS, TLR4 also recognizes endogenous ligands like fibrinogen, HMGB1, and hyaluronan in autoimmune conditions and sepsis. We employed computational approaches to target TRAM and recognize small molecule inhibitors from small molecules of natural origin, as contained in the Super Natural II database. Finally, cell reporter assays and NMR studies enabled the identification of promising lead compounds. Hence, this study aims to attenuate the signaling of the TLR4-TRAM-TRIF cascade in these auto-inflammatory conditions.

11.
BMC Bioinformatics ; 13 Suppl 7: S1, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22594995

RESUMO

BACKGROUND: Olfactory receptors are key components in signal transduction. Mutations in olfactory receptors alter the odor response, which is a fundamental response of organisms to their immediate environment. Understanding the relationship between odorant response and mutations in olfactory receptors is an important problem in bioinformatics and computational biology. In this work, we have systematically analyzed the relationship between various physical, chemical, energetic and conformational properties of amino acid residues, and the change of odor response/compound's potency/half maximal effective concentration (EC50) due to amino acid substitutions. RESULTS: We observed that both the characteristics of odorant molecule (ligand) and amino acid properties are important for odor response and EC50. Additional information on neighboring and surrounding residues of the mutants enhanced the correlation between amino acid properties and EC50. Further, amino acid properties have been combined systematically using multiple regression techniques and we obtained a correlation of 0.90-0.98 with odor response/EC50 of goldfish, mouse and human olfactory receptors. In addition, we have utilized machine learning methods to discriminate the mutants, which enhance or reduce EC50 values upon mutation and we obtained an accuracy of 93% and 79% for self-consistency and jack-knife tests, respectively. CONCLUSIONS: Our analysis provides deep insights for understanding the odor response of olfactory receptor mutants and the present method could be used for identifying the mutants with enhanced specificity.


Assuntos
Substituição de Aminoácidos , Mutação , Receptores Odorantes/química , Receptores Odorantes/genética , Animais , Carpa Dourada/metabolismo , Humanos , Ligantes , Camundongos , Conformação Molecular , Odorantes , Receptores Odorantes/metabolismo , Análise de Regressão , Transdução de Sinais
12.
Bioinformation ; 18(6): 600-603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37168784

RESUMO

Late N. Srinivasan belongs to the GN Ramachandran lineage of protein structural analysts. His role in the advancement of the structure based understanding of signal transduction, protein kinase analyses and host-pathogen interactions both developing and using Bioinformatics tools for protein-protein interactions, protein dynamics, remote homology detection and polypeptide stereochemistry is well documented in the literature. Thus, his contribution to the understanding of protein function through structural analysis, using computational models and tools, is exceptional.

13.
BMC Struct Biol ; 11: 35, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21942950

RESUMO

BACKGROUND: Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. RESULTS: To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. CONCLUSION: Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.


Assuntos
Evolução Molecular , Modelos Moleculares , Miosinas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Chara/metabolismo , Bases de Dados de Proteínas , Dados de Sequência Molecular , Miosina Tipo V/química , Miosina Tipo V/classificação , Miosina Tipo V/metabolismo , Miosinas/classificação , Miosinas/metabolismo , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Vitis/metabolismo
14.
Comp Funct Genomics ; 2011: 878973, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21860605

RESUMO

Accurate functional annotation of protein sequences is hampered by important factors such as the failure of sequence search methods to identify relationships and the inherent diversity in function of proteins related at low sequence similarities. Earlier, we had employed intermediate sequence search approach to establish new domain relationships in the unassigned regions of gene products at the whole genome level by taking Mycoplasma gallisepticum as a specific example and established new domain relationships. In this paper, we report a detailed comparison of the conservation status of the domain and domain architectures of the gene products that bear our newly predicted domains amongst 14 other Mycoplasma genomes and reported the probable implications for the organisms. Some of the domain associations, observed in Mycoplasma that afflict humans and other non-human primates, are involved in regulation of solute transport and DNA binding suggesting specific modes of host-pathogen interactions.

15.
Sci Rep ; 11(1): 1777, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469066

RESUMO

Understanding exposures to low doses of ionizing radiation are relevant since most environmental, diagnostic radiology and occupational exposures lie in this region. However, the molecular mechanisms that drive cellular responses at these doses, and the subsequent health outcomes, remain unclear. A local monazite-rich high level natural radiation area (HLNRA) in the state of Kerala on the south-west coast of Indian subcontinent show radiation doses extending from ≤ 1 to ≥ 45 mGy/y and thus, serve as a model resource to understand low dose mechanisms directly on healthy humans. We performed quantitative discovery proteomics based on multiplexed isobaric tags (iTRAQ) coupled with LC-MS/MS on human peripheral blood mononuclear cells from HLNRA individuals. Several proteins involved in diverse biological processes such as DNA repair, RNA processing, chromatin modifications and cytoskeletal organization showed distinct expression in HLNRA individuals, suggestive of both recovery and adaptation to low dose radiation. In protein-protein interaction (PPI) networks, YWHAZ (14-3-3ζ) emerged as the top-most hub protein that may direct phosphorylation driven pro-survival cellular processes against radiation stress. PPI networks also identified an integral role for the cytoskeletal protein ACTB, signaling protein PRKACA; and the molecular chaperone HSPA8. The data will allow better integration of radiation biology and epidemiology for risk assessment [Data are available via ProteomeXchange with identifier PXD022380].


Assuntos
Proteínas 14-3-3/metabolismo , Radiação de Fundo/efeitos adversos , Exposição Ambiental/efeitos adversos , Proteínas de Choque Térmico/metabolismo , Leucócitos Mononucleares/metabolismo , Reparo do DNA/genética , Humanos , Índia , Mapas de Interação de Proteínas/fisiologia , Proteômica , Radiação Ionizante
16.
Amino Acids ; 39(3): 777-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20186553

RESUMO

Lipocalins are functionally diverse proteins that are composed of 120-180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew's correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/lipopred.htm.


Assuntos
Lipocalinas/química , Alinhamento de Sequência/métodos , Bases de Dados de Proteínas , Humanos , Estrutura Terciária de Proteína , Alinhamento de Sequência/instrumentação , Homologia de Sequência de Aminoácidos
17.
Nucleic Acids Res ; 36(Database issue): D218-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17933773

RESUMO

Structural motifs are important for the integrity of a protein fold and can be employed to design and rationalize protein engineering and folding experiments. Such conserved segments represent the conserved core of a family or superfamily and can be crucial for the recognition of potential new members in sequence and structure databases. We present a database, MegaMotifBase, that compiles a set of important structural segments or motifs for protein structures. Motifs are recognized on the basis of both sequence conservation and preservation of important structural features such as amino acid preference, solvent accessibility, secondary structural content, hydrogen-bonding pattern and residue packing. This database provides 3D orientation patterns of the identified motifs in terms of inter-motif distances and torsion angles. Important applications of structural motifs are also provided in several crucial areas such as similar sequence and structure search, multiple sequence alignment and homology modeling. MegaMotifBase can be a useful resource to gain knowledge about structure and functional relationship of proteins. The database can be accessed from the URL http://caps.ncbs.res.in/MegaMotifbase/index.html.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Proteínas/classificação , Sequência de Aminoácidos , Sequência Conservada , Internet , Proteínas/química , Análise de Sequência de Proteína , Homologia Estrutural de Proteína
18.
Biochemistry ; 48(10): 2248-60, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19161286

RESUMO

Kinesin-2 is an anterograde motor involved in intraflagellar transport and certain other intracellular transport processes. It consists of two different motor subunits and an accessory protein KAP (kinesin accessory protein). The motor subunits were shown to bind each other through the coiled-coil stalk domains, while KAP was proposed to bind the tail domains of the motor subunits. Although several genetic studies established that KAP plays an important role in kinesin-2 functions, its exact role remains unclear. Here, we report the results of a systematic analysis of the KAP binding sites by using recombinant Drosophila kinesin-2 subunits as well as the endogenous proteins. These show that at least one of the coiled-coil stalks is sufficient to bind the N-terminal region of DmKAP. The soluble complex involving the recombinant kinesin-2 fragments is reconstituted in vitro at high salt concentrations, suggesting that the interaction is primarily nonionic. Furthermore, independent distant homology modeling indicated that DmKAP may bind along the coiled-coil stalks through a combination of predominantly hydrophobic interactions and hydrogen bonds. These observations led us to propose that KAP would stabilize the motor subunit heterodimer and help assemble a greater kinesin-2 complex in vivo.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Cinesinas/química , Cinesinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Sítios de Ligação/fisiologia , Colina O-Acetiltransferase/química , Colina O-Acetiltransferase/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Cinesinas/genética , Modelos Moleculares , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Multimerização Proteica/fisiologia , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica
19.
BMC Genomics ; 9: 549, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19019219

RESUMO

BACKGROUND: Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. RESULTS: A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc.) were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. CONCLUSION: Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes, suggesting distinct roles for serine proteases in prokaryotes. Many domain combinations were found unique to specific prokaryotic species, suggesting functional specialisation in various cellular and physiological processes.


Assuntos
Genoma , Serina Endopeptidases/genética , Carboxipeptidases/genética , Análise por Conglomerados , Endopeptidase Clp/genética , Transferência Genética Horizontal , Genômica , Filogenia , Células Procarióticas , Protease La/genética , Subtilisina/genética , Tripsina/genética
20.
Gene ; 407(1-2): 199-215, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17996400

RESUMO

Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.


Assuntos
Biologia Computacional/métodos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Análise de Sequência de Proteína/métodos , Serina Endopeptidases/metabolismo , Animais , Análise por Conglomerados , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/genética , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA