Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 257: 119394, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866313

RESUMO

Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.

2.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687014

RESUMO

In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.

3.
Heliyon ; 10(10): e31087, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826730

RESUMO

As the demand for rare earth elements (REEs) continues to surge in diverse industrial and medical domains, the ecological consequences of their ubiquitous presence have garnered heightened attention. Among the REEs, gadolinium (Gd), commonly used in medical imaging contrast agents, has emerged as a pivotal concern due to its inadvertent introduction into marine ecosystems via wastewater release. This study delves into the complex ecotoxicological implications of Gd contamination, focusing on its impact on the embryonic development and sperm functionality of Mytilus galloprovincialis. The findings from this study underscore the potential hazards posed by this rare element, offering a critical perspective on the ecological risks associated with Gd. Notably, this exploratory work reveals that Gd exerts a significant embryotoxic effect at elevated concentrations, with an observed half maximal effective concentration (EC50) value of 0.026 mg/L. Additionally, Gd exposure leads to a considerable reduction in sperm motility and alters sperm morfo-kinetic parameters, especially at a concentration of 5.6 mg/L. The results highlight a dose-dependent relationship between Gd exposure and the prevalence of specific malformation types in Mytilus embryos, further providing crucial insights into the potential risks imposed by this rare earth element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA