Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nature ; 534(7605): 82-5, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251279

RESUMO

The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.

2.
Nature ; 539(7627): 65-68, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27626378

RESUMO

A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

4.
Nature ; 447(7142): 289-91, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17507976

RESUMO

Enceladus, a small icy satellite of Saturn, has active plumes jetting from localized fractures ('tiger stripes') within an area of high heat flux near the south pole. The plume characteristics and local high heat flux have been ascribed either to the presence of liquid water within a few tens of metres of the surface, or the decomposition of clathrates. Neither model addresses how delivery of internal heat to the near-surface is sustained. Here we show that the most likely explanation for the heat and vapour production is shear heating by tidally driven lateral (strike-slip) fault motion with displacement of approximately 0.5 m over a tidal period. Vapour produced by this heating may escape as plumes through cracks reopened by the tidal stresses. The ice shell thickness needed to produce the observed heat flux is at least 5 km. The tidal displacements required imply a Love number of h2 > 0.01, suggesting that the ice shell is decoupled from the silicate interior by a subsurface ocean. We predict that the tiger-stripe regions with highest relative temperatures will be the lower-latitude branch of Damascus, Cairo around 60 degrees W longitude and Alexandria around 150 degrees W longitude.

5.
Pharmacopsychiatry ; 46(7): 286-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24105081

RESUMO

INTRODUCTION: The schizophrenia susceptibility gene neuregulin 1 (NRG1) confers vulnerability to the neurobehavioural eff ects of cannabinoids differently across sexes. Male but not female Nrg1 heterozygous (HET) mice display facilitation of prepulse inhibition (PPI) to acute Δ9-tetrahydrocannabinol (THC) exposure compared to WT controls. We aim to observe whether repeated administration of THC may overcome the acute insensitivity of female Nrg1 HET mice to THC exposure. METHODS: Female Nrg1 HET mice and WT controls were administered THC daily for 21 days, with PPI and anxiety-related behaviour in the light-dark test (LD) examined on the fi rst and last day of treatment and 21 days after cessation of dosing. RESULTS: Following repeated, but not acute THC exposure, female Nrg1 HET mice displayed THC-induced facilitation of PPI which was not observed in WT mice treated with THC. There were no residual eff ects of THC on PPI in either genotype when assessed 21 days following the final THC dose. An anxiogenic response to THC was evident following repeated, but not acute, administration in the LD test in both genotypes. DISCUSSION: These findings show that the acute insensitivity of female Nrg1 HET mice to THC-induced PPI facilitation may be overcome following repeated THC exposure.


Assuntos
Dronabinol/farmacologia , Heterozigoto , Neuregulina-1/genética , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/genética , Animais , Ansiedade/genética , Feminino , Genótipo , Camundongos
6.
Nature ; 439(7079): 943-5, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16495991

RESUMO

Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in diameter and there are no fundamental reasons why Pluto should not have more satellites. Here we report the discovery of two additional moons around Pluto, provisionally designated S/2005 P 1 (hereafter P1) and S/2005 P 2 (hereafter P2), which makes Pluto the first Kuiper belt object known to have multiple satellites. These new satellites are much smaller than Charon, with estimates of P1's diameter ranging from 60 km to 165 km, depending on the surface reflectivity; P2 is about 20 per cent smaller than P1. Although definitive orbits cannot be derived, both new satellites appear to be moving in circular orbits in the same orbital plane as Charon, with orbital periods of approximately 38 days (P1) and approximately 25 days (P2).

7.
Nature ; 439(7079): 946-8, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16495992

RESUMO

The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found--perhaps frequently--around other large Kuiper belt objects.

8.
Icarus ; 348: 113745, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32981951

RESUMO

In 2011 a thermally anomalous region was discovered on Mimas, Saturn's innermost major icy satellite (Howett et al., 2011). The anomalous region is a lens-like shape located at low latitudes on Mimas' leading hemisphere. It manifests as a region with warmer nighttime temperatures, and cooler daytime ones than its surroundings. The thermally anomalous region is spatially correlated with a darkening in Mimas' IR/UV surface color (Schenk et al. 2011) and the region preferentially bombarded by high-energy electrons (Paranicas et al., 2012, 2014; Nordheim et al., 2017). We use data from Cassini's Composite Infrared Spectrometer (CIRS) to map Mimas' surface temperatures and its thermophysical properties. This provides a dramatic improvement on the work in Howett et al. (2011), where the values were determined at only two regions on Mimas (one inside, and another outside of the anomalous region). We use all spatially-resolved scans made by CIRS' focal plane 3 (FP3, 600 to 1100 cm-1) of Mimas' surface, which are largely daytime observations but do include one nighttime one. The resulting temperature maps confirm the presence and location of Mimas' previously discovered thermally anomalous region. No other thermally anomalous regions were discovered, although we note that the surface coverage is incomplete on Mimas' leading and anti-Saturn hemisphere. The thermal inertia map confirms that the anomalous region has a notably higher thermal inertia than its surroundings: 98±42 J m-2 K-1 s-1/2 inside of the anomaly, compared to 34±32 J m-2 K-1 s-1/2 outside. The albedo inside and outside of the anomalous region agrees within their uncertainty: 0.45±0.08 inside compared to 0.41±0.07 outside the anomaly. Interestingly the albedo appears brighter inside the anomaly region, which may not be surprising given this region does appear brighter at some UV wavelengths (0.338 µm, see Schenk et al., 2011). However, this result should be treated with caution because, as previously stated, statistically the albedo of these two regions is the same when their uncertainties are considered. These thermal inertia and albedo values determined here are consistent with those found by Howett et al. (2011), who determined the thermal inertia inside the anomaly to be 66±23 J m-2 K-1 s-1/2 and <16 J m-2 K-1 s-1/2 outside, with albedos that varied from 0.49 to 0.70.

9.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054695

RESUMO

The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.

10.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054693

RESUMO

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

11.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054694

RESUMO

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

12.
Science ; 288(5469): 1208-10, 2000 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-10817990

RESUMO

Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism.


Assuntos
Gases , Júpiter , Enxofre , Erupções Vulcânicas , Meio Ambiente Extraterreno , Astronave , Análise Espectral , Dióxido de Enxofre
13.
Science ; 257(5076): 1507-10, 1992 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17776157

RESUMO

The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

14.
Science ; 288(5469): 1198-201, 2000 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-10817987

RESUMO

Galileo's photopolarimeter-radiometer instrument mapped Io's thermal emission during the I24, I25, and I27 flybys with a spatial resolution of 2.2 to 300 kilometers. Mapping of Loki in I24 shows uniform temperatures for most of Loki Patera and high temperatures in the southwest corner, probably resulting from an eruption that began 1 month before the observation. Most of Loki Patera was resurfaced before I27. Pele's caldera floor has a low temperature of 160 kelvin, whereas flows at Pillan and Zamama have temperatures of up to 200 kelvin. Global maps of nighttime temperatures provide a means for estimating global heat flow.


Assuntos
Temperatura Alta , Júpiter , Voo Espacial , Erupções Vulcânicas , Escuridão , Meio Ambiente Extraterreno , Filtração , Fotometria , Luz Solar
15.
Science ; 281(5373): 87-90, 1998 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-9651251

RESUMO

Infrared wavelength observations of Io by the Galileo spacecraft show that at least 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patera, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with these high-temperature hot spots.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Silicatos , Temperatura Alta , Minerais , Espectrofotometria Infravermelho , Erupções Vulcânicas
16.
Icarus ; 321: 705-714, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33005060

RESUMO

On 11th April 2015 Cassini's Composite Infrared Spectrometer (CIRS) made a series of observations of Tethys' daytime anti-Saturn hemisphere over a nine-hour time period. During this time the sub-spacecraft position was remarkably stable (0.3° S to 3.9° S; 153.2° W to 221.8° W), and so these observations provide unprecedented coverage of diurnal temperature variations on Tethys' anti-Saturn hemisphere. In 2012 a thermal anomaly was discovered at low latitudes on Tethys' leading hemisphere; it appears cooler during the day and warmer at night than its surroundings (Howett et al., 2012) and is spatially correlated with a decrease in the IR3/UV3 visible color ratio (Schenk et al., 2011). The cause of this anomaly is believed to be surface alteration by high-energy electrons, which preferentially bombard low-latitudes of Tethys' leading hemisphere (Schenk et al., 2011; Howett et al., 2012; Paranicas et al. 2014; Schaible et al., 2017). The thermal anomaly was quickly dubbed "Pac-Man" due to its resemblance to the 1980s video game icon. We use these daytime 2015 CIRS data, along with two sets of nighttime CIRS observations of Tethys (from 27 June 2007 and 17 August 2015) to make maps of bolometric Bond albedo and thermal inertia variations across the anti-Saturn hemisphere of Tethys (including the edge of its Pac-Man region). These maps confirm the presence of the Pac-Man thermal anomaly and show that while Tethys' bolometric Bond albedo varies negligibly outside and inside the anomaly (0.69±0.02 inside, compared to 0.71±0.04 outside) the thermal inertia varies dramatically (29±10 J m-2 K-1 s-1/2 inside, compared to 9±4 J m-2 K-1 s-1/2 outside). These thermal inertias are in keeping with previously published values: 25±3 J m-2 K-1 s-1/2 inside, and 5±1 J m-2 K-1 s-1/2 outside the anomaly (Howett et al., 2012). A detailed analysis shows that on smaller spatial-scales the bolometric Bond albedo does vary: increasing to a peak value at 180° W. For longitudes between ~100° W and ~160° W the thermal inertia increases from northern to southern latitudes, while the reverse is true for bolometric Bond albedo. The thermal inertia on Tethys generally increases towards the center of its leading hemisphere but also displays other notable small-scale variations. These thermal inertia and bolometric Bond albedo variations are perhaps due to differences in competing surface modification by E ring grains and high-energy electrons which both bombard Tethys' leading hemisphere (but in different ways). A comparison between the observed temperatures and our best thermal model fits shows notable discrepancies in the morning warming curve, which may provide evidence of regional variations in surface roughness effects, perhaps again due to variations in surface alteration mechanisms.

17.
Science ; 363(6430): 955-959, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819958

RESUMO

The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System.

18.
J Geophys Res Space Phys ; 124(9): 7413-7424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35860291

RESUMO

Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto. The intensity is increasing exponentially with distance to Pluto and reaches nominal levels of the interplanetary medium at about 190R P distance. Inside the wake of Pluto, we observe oscillations of the ion intensities with a periodicity of about 0.2 hr. We show that these can be quantitatively explained by the electric field of an ultralow-frequency wave and discuss possible physical drivers for such a field. We find no evidence for the presence of plutogenic ions in the considered energy range.

19.
Science ; 364(6441)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097641

RESUMO

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.

20.
Science ; 351(6279): aad9189, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989260

RESUMO

The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA