Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682659

RESUMO

Cutaneous melanoma emerges from the malignant transformation of melanocytes and is the most aggressive type of skin cancer. The progression can occur in different stages: radial growth phase (RGP), vertical growth phase (VGP), and metastasis. Reactive oxygen species contribute to all phases of melanomagenesis through the modulation of oncogenic signaling pathways. Tetrahydrobiopterin (BH4) is an important cofactor for NOS coupling, and an uncoupled enzyme is a source of superoxide anion (O2•-) rather than nitric oxide (NO), altering the redox homeostasis and contributing to melanoma progression. In the present work, we showed that the BH4 amount varies between different cell lines corresponding to distinct stages of melanoma progression; however, they all presented higher O2•- levels and lower NO levels compared to melanocytes. Our results showed increased NOS expression in melanoma cells, contributing to NOS uncoupling. BH4 supplementation of RGP cells, and the DAHP treatment of metastatic melanoma cells reduced cell growth. Finally, Western blot analysis indicated that both treatments act on the PI3K/AKT and MAPK pathways of these melanoma cells in different ways. Disruption of cellular redox homeostasis by the altered BH4 concentration can be explored as a therapeutic strategy according to the stage of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Homeostase , Humanos , Melanoma/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo
2.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920748

RESUMO

The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol. Thus, this review aims to highlight and discuss autophagy-related drugs for COVID-19, from in vitro to in vivo studies. We identified specific compounds that may modulate autophagy and exhibit antiviral properties. We hope that research initiatives and efforts will identify novel or "off-label" drugs that can be used to effectively treat patients infected with SARS-CoV-2, reducing the risk of mortality.


Assuntos
Autofagia/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Terapia de Alvo Molecular , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
3.
Toxicol In Vitro ; 90: 105603, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37121360

RESUMO

Sorafenib, an oral multi-kinase inhibitor, used to treat hepatocellular carcinoma (HCC). However, drug resistance is still common in several HCC patients. This complex mechanism is not yet fully elucidated, driving the search for new therapeutic targets to potentiate the antitumoral effect of sorafenib. Recent findings have linked the expression of Two-Pore Channels (TPCs) receptors with the development and progression of cancer. TPCs receptors are stimulated by NAADP, a Ca2+ messenger, and inhibited by their antagonists Ned-19 and tetrandrine. Here, we investigate the participation of TPCs inhibition in cell death and autophagy in sorafenib-treated HCC cells. Here, we show that the association of sorafenib with tetrandrine increased sorafenib-induced cell death accompanied by increased lysotracker fluorescence intensity. In contrast, these effects were not observed after treating these cells with Ned-19. The pharmacological TPC antagonists by Ned-19 and tetrandrine or siRNA-mediated TPC1/2 inhibition decreased sorafenib-induced Ca2+ release, reinforcing the participation of TPCs in sorafenib HCC responses. Furthermore, the association tetrandrine and sorafenib blocked autophagy through ERK1/2 pathway inhibition, which represents a putative target for potentiating HCC cell death. Therefore, our study proposes the use of tetrandrine analogs with the aim of improving sorafenib therapy. Also, our data also allow us to suggest that TPCs may be a new target in anticancer therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Autofagia
4.
ACS Appl Bio Mater ; 4(8): 6488-6501, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006908

RESUMO

The cytotoxic mode of action of four antimicrobial peptides (AMPs) (gomesin, tachyplesin, protegrin, and polyphemusin) against a HeLa cell tumor model is discussed. A study of cell death by AMP stimulation revealed some similarities, including annexin-V externalization, reduction of mitochondrial potential, insensitivity against inhibitors of cell death, and membrane permeabilization. Evaluation of signaling proteins and gene expression that control cell death revealed wide variation in the responses to AMPs. However, the ability to cross cell membranes emerged as an important characteristic of AMP-dependent cell death, where endocytosis mediated by dynamin is a common mechanism. Furthermore, the affinity between AMPs and glycosaminoglycans (GAGs) and GAG participation in the cytotoxicity of AMPs were verified. The results show that, despite their primary and secondary structure homology, these peptides present different modes of action, but endocytosis and GAG participation are an important and common mechanism of cytotoxicity for ß-hairpin peptides.


Assuntos
Peptídeos Antimicrobianos , Glicosaminoglicanos , Humanos , Morte Celular , Endocitose , Células HeLa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA