Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer ; 23(1): 103, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755681

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is marked by a dismal survival rate, lacking effective therapeutics due to its aggressive growth, late-stage diagnosis, and chemotherapy resistance. Despite debates on NF-κB targeting for PDAC treatment, no successful approach has emerged. METHODS: To elucidate the role of NF-κB, we ablated NF-κB essential modulator (NEMO), critical for conventional NF-κB signaling, in the pancreata of mice that develop precancerous lesions (KC mouse model). Secretagogue-induced pancreatitis by cerulein injections was utilized to promote inflammation and accelerate PDAC development. RESULTS: NEMO deletion reduced fibrosis and inflammation in young KC mice, resulting in fewer pancreatic intraepithelial neoplasias (PanINs) at later stages. Paradoxically, however, NEMO deletion accelerated the progression of these fewer PanINs to PDAC and reduced median lifespan. Further, analysis of tissue microarrays from human PDAC sections highlighted the correlation between reduced NEMO expression in neoplastic cells and poorer prognosis, supporting our observation in mice. Mechanistically, NEMO deletion impeded oncogene-induced senescence (OIS), which is normally active in low-grade PanINs. This blockage resulted in fewer senescence-associated secretory phenotype (SASP) factors, reducing inflammation. However, blocked OIS fostered replication stress and DNA damage accumulation which accelerated PanIN progression to PDAC. Finally, treatment with the DNA damage-inducing reagent etoposide resulted in elevated cell death in NEMO-ablated PDAC cells compared to their NEMO-competent counterparts, indicative of a synthetic lethality paradigm. CONCLUSIONS: NEMO exhibited both oncogenic and tumor-suppressive properties during PDAC development. Caution is suggested in therapeutic interventions targeting NF-κB, which may be detrimental during PanIN progression but beneficial post-PDAC development.


Assuntos
Carcinoma Ductal Pancreático , Progressão da Doença , NF-kappa B , Neoplasias Pancreáticas , Transdução de Sinais , Animais , Camundongos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/etiologia , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carcinoma in Situ/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Camundongos Knockout , Linhagem Celular Tumoral
2.
Haematologica ; 107(8): 1758-1772, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854277

RESUMO

Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary samples from patients as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chromosome 3 abnormalities. Furthermore, we showed that NRIP1 knockdown negatively affects the proliferation and survival of 3qrearranged AML cells and increases their sensitivity to all-trans retinoic acid, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities.


Assuntos
Leucemia Mieloide Aguda , Proteína 1 de Interação com Receptor Nuclear , Aberrações Cromossômicas , Cromossomos/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Receptores do Ácido Retinoico/genética
3.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752017

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer. The poor prognosis calls for a more detailed understanding of disease biology in order to pave the way for the development of effective therapies. Typically, the pancreatic tumor is composed of a minority of malignant cells within an excessive tumor microenvironment (TME) consisting of extracellular matrix (ECM), fibroblasts, immune cells, and endothelial cells. Research conducted in recent years has particularly focused on cancer-associated fibroblasts (CAFs) which represent the most prominent cellular component of the desmoplastic stroma. Here, we review the complex crosstalk between CAFs, tumor cells, and other components of the TME, and illustrate how these interactions drive disease progression. We also discuss the emerging field of CAF heterogeneity, their tumor-supportive versus tumor-suppressive capacity, and the consequences for designing stroma-targeted therapies in the future.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Células Estromais/patologia , Microambiente Tumoral , Comunicação Celular , Humanos
5.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a largely incurable cancer type. Its high mortality is attributed to the lack of efficient biomarkers for early detection combined with its high metastatic properties. The aim of our study was to investigate the role of NF-κB signaling in the development and metastasis of PDAC. We used the well-established KPC mouse model, and, through genetic manipulation, we deleted NF-κB essential modulator (NEMO) in the pancreata of KPC mice. Interestingly, NEMO deletion altered the differentiation status of the primary tumor but did not significantly affect its development. However, in the absence of NEMO, the median survival of the mice was prolonged by 13.5 days (16%). In addition, examination of the liver demonstrated that, whereas KPC mice occasionally developed liver macro-metastasis, NEMO deletion completely abrogated this outcome. Further analysis of the tumor revealed that the expression of epithelial-mesenchymal transition (EMT) transcription factors was diminished in the absence of NEMO. Conclusively, our study provides evidence that NF-κB is dispensable for the progression of high-grade PanINs towards PDAC. In contrast, NF-κB signaling is essential for the development of metastasis by regulating the gene expression program of EMT.

6.
Leukemia ; 34(5): 1253-1265, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31768018

RESUMO

MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Células Mieloides/patologia , Proteína Meis1/metabolismo , Animais , Apoptose , Sistemas CRISPR-Cas , Diferenciação Celular , Proliferação de Células , Feminino , Hematopoese , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Células Mieloides/metabolismo , Proteína Meis1/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA