Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 127(5): 1011-20, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20017137

RESUMO

Hepatocellular carcinoma (HCC) is a common cancer, and hepatitis B virus (HBV) is a major etiological agent. Convincing epidemiological and experimental evidence also links HCC to aflatoxin, a naturally occurring mycotoxin that produces a signature p53-249(ser) mutation. Recently, we have reported that tumor-derived HBx variants encoded by HBV exhibited attenuated transactivation and proapoptotic functions but retained their ability to block p53-mediated apoptosis. These results indicate that mutations in HBx may contribute to the development of HCC. In this study, we determined whether tumor-derived HBx mutants along, or in cooperation with p53-249(ser), could alter cell proliferation and chromosome stability of normal human hepatocytes. To test this hypothesis, we established a telomerase immortalized normal human hepatocycte line HHT4 that exhibited a near diploid karyotype and expressed many hepatocyte-specific genes. We found that overexpression one of the tumor-derived HBx mutants, CT, significantly increased colony forming efficiency (CFE) while its corresponding wild-type allele CNT significantly decreased CFE in HHT4 cells. p53-249(ser) rescued CNT-mediated inhibition of colony formation. Although HHT4 cells lacked an anchorage independent growth capability as they did not form any colonies in soft agar, the CT-expressing HHT4 cells could form colonies, which could be significantly enhanced by p53-249(ser). Induction of aneuploidy could be observed in HHT4 cells expressing CT, but additionally recurring chromosome abnormalities could only be detected in cells coexpressing CT and p53-249(ser). Our results are consistent with the hypothesis that certain mutations in HBx and p53 at codon 249 may cooperate in contributing to liver carcinogenesis.


Assuntos
Aneuploidia , Hepatócitos/metabolismo , Mutação/genética , Telomerase/metabolismo , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Apoptose , Biomarcadores/metabolismo , Western Blotting , Adesão Celular , Proliferação de Células , Transformação Celular Neoplásica , Células Cultivadas , Bandeamento Cromossômico , Ensaio de Unidades Formadoras de Colônias , Perfilação da Expressão Gênica , Vírus da Hepatite B , Hepatócitos/citologia , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cariotipagem Espectral , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais Reguladoras e Acessórias
2.
Oncogene ; 24(10): 1738-48, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-15674334

RESUMO

RECQ4 is a member of the RecQ helicase family, which has been implicated in the regulation of DNA replication, recombination and repair. p53 modulates the functions of RecQ helicases including BLM and WRN. In this study, we demonstrate that p53 can regulate the transcription of RECQ4. Using nontransformed, immortalized normal human fibroblasts, we show that p53-dependent downregulation of RECQ4 expression occurred in G1-arrested cells, both in the absence or presence of exogenous DNA damage. Wild-type p53 (but not the tumor-derived mutant forms) repressed RECQ4 promoter activity. The camptothecin or etoposide-dependent p53-mediated repression was attenuated by trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs). Repression of the RECQ4 promoter was accompanied with an increased accumulation of HDAC1, and the loss of SP1 and p53 binding to the promoter. The simultaneous formation of a camptothecin-dependent p53-SP1 complex indicated its occurrence outside of the RECQ4 promoter. These data suggest that p53-mediated repression of RECQ4 transcription during DNA damage results from the modulation of the promoter occupancy of transcription activators and repressors.


Assuntos
DNA Helicases/genética , Proteínas Repressoras/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Células Cultivadas , Dano ao DNA , Fase G1 , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas , RecQ Helicases , Ativação Transcricional
3.
Cancer Res ; 68(9): 3193-203, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451145

RESUMO

Nutlin-3, an MDM2 inhibitor, activates p53, resulting in several types of cancer cells undergoing apoptosis. Although p53 is mutated or deleted in approximately 50% of all cancers, p53 is still functionally active in the other 50%. Consequently, nutlin-3 and similar drugs could be candidates for neoadjuvant therapy in cancers with a functional p53. Cellular senescence is also a phenotype induced by p53 activation and plays a critical role in protecting against tumor development. In this report, we found that nutlin-3a can induce senescence in normal human fibroblasts. Nutlin-3a activated and repressed a large number of p53-dependent genes, including those encoding microRNAs. mir-34a, mir-34b, and mir-34c, which have recently been shown to be downstream effectors of p53-mediated senescence, were up-regulated, and inhibitor of growth 2 (ING2) expression was suppressed by nutlin-3a treatment. Two candidates for a p53-DNA binding consensus sequence were found in the ING2 promoter regulatory region; thus, we performed chromatin immunoprecipitation and electrophoretic mobility shift assays and confirmed p53 binding directly to those sites. In addition, the luciferase activity of a construct containing the ING2 regulatory region was repressed after p53 activation. Antisense knockdown of ING2 induces p53-independent senescence, whereas overexpression of ING2 induces p53-dependent senescence. Taken together, we conclude that nutlin-3a induces senescence through p53 activation in normal human fibroblasts, and p53-mediated mir34a, mir34b, and mir34c up-regulation and ING2 down-regulation may be involved in the senescence pathway.


Assuntos
Senescência Celular/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Imidazóis/farmacologia , MicroRNAs/genética , Piperazinas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Células Cultivadas , Senescência Celular/genética , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Células HCT116 , Humanos , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia , Regulação para Cima
4.
J Biol Chem ; 277(35): 31980-7, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12080066

RESUMO

BLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro. The p53 248W mutant reduces abilities of both to bind HJ and inhibit helicase activities, whereas the p53 273H mutant loses these abilities. Moreover, full-length p53 and a C-terminal polypeptide (residues 373-383) inhibit the BLM and WRN helicase activities, but phosphorylation at Ser(376) or Ser(378) completely abolishes this inhibition. Following blockage of DNA replication, Ser(15) phospho-p53, BLM, and RAD51 colocalize in nuclear foci at sites likely to contain DNA replication intermediates in cells. Our results are consistent with a novel mechanism for p53-mediated regulation of DNA recombinational repair that involves p53 post-translational modifications and functional protein-protein interactions with BLM and WRN DNA helicases.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Sítios de Ligação , Linhagem Celular , Exodesoxirribonucleases , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Cinética , Linfócitos , Mutagênese , RecQ Helicases , Proteínas Recombinantes de Fusão/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA