Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(20): 3373-3387, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075808

RESUMO

Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (~1 in 5000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggests multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein Neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicate that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased retinal pigmented epithelium (RPE) proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during OF closure.


Assuntos
Proliferação de Células , Coloboma/patologia , Olho/patologia , Regulação da Expressão Gênica no Desenvolvimento , Neurofibromina 2/fisiologia , Organogênese , Epitélio Pigmentado da Retina/patologia , Animais , Coloboma/etiologia , Coloboma/metabolismo , Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Epitélio Pigmentado da Retina/metabolismo
2.
Cleft Palate Craniofac J ; 59(4): 530-537, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34291675

RESUMO

Complete congenital arhinia is a rare defect of embryogenesis leading to the absence of the external nose and airway. We report our novel multistaged reconstructive approach and literature review. Nasal methyl methacrylate prosthesis was created from a stereolithographic model for use as a temporary prosthesis and tissue expander. Lefort 1 with cannulization was utilized for midface advancement and airway formation. External framework was reconstructed with bilateral conchal bowl cartilage and rib osteocartilagenous grafts. Patient was pleased with the aesthetics and had safe decannulation with the ability to breathe through the nose and airway.


Assuntos
Implantes Dentários , Rinoplastia , Anormalidades Congênitas , Estética Dentária , Humanos , Nariz/anormalidades , Nariz/diagnóstico por imagem , Nariz/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA