RESUMO
BACKGROUND: The superimposed pressure is the primary determinant of the pleural pressure gradient. Obesity is associated with elevated end-expiratory esophageal pressure, regardless of lung disease severity, and the superimposed pressure might not be the only determinant of the pleural pressure gradient. The study aims to measure partitioned respiratory mechanics and superimposed pressure in a cohort of patients admitted to the ICU with and without class III obesity (BMI ≥ 40 kg/m2), and to quantify the amount of thoracic adipose tissue and muscle through advanced imaging techniques. METHODS: This is a single-center observational study including ICU-admitted patients with acute respiratory failure who underwent a chest computed tomography scan within three days before/after esophageal manometry. The superimposed pressure was calculated from lung density and height of the largest axial lung slice. Automated deep-learning pipelines segmented lung parenchyma and quantified thoracic adipose tissue and skeletal muscle. RESULTS: N = 18 participants (50% female, age 60 [30-66] years), with 9 having BMI < 30 and 9 ≥ 40 kg/m2. Groups showed no significant differences in age, sex, clinical severity scores, or mortality. Patients with BMI ≥ 40 exhibited higher esophageal pressure (15.8 ± 2.6 vs. 8.3 ± 4.9 cmH2O, p = 0.001), higher pleural pressure gradient (11.1 ± 4.5 vs. 6.3 ± 4.9 cmH2O, p = 0.04), while superimposed pressure did not differ (6.8 ± 1.1 vs. 6.5 ± 1.5 cmH2O, p = 0.59). Subcutaneous and intrathoracic adipose tissue were significantly higher in subjects with BMI ≥ 40 and correlated positively with esophageal pressure and pleural pressure gradient (p < 0.05). Muscle areas did not differ between groups. CONCLUSIONS: In patients with class III obesity, the superimposed pressure does not approximate the pleural pressure gradient, which is higher than in patients with lower BMI. The quantity and distribution of subcutaneous and intrathoracic adiposity also contribute to increased pleural pressure gradients in individuals with BMI ≥ 40. This study introduces a novel physiological concept that provides a solid rationale for tailoring mechanical ventilation in patients with high BMI, where specific guidelines recommendations are lacking.
Assuntos
Obesidade , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Obesidade/fisiopatologia , Obesidade/complicações , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Tomografia Computadorizada por Raios X/métodos , Mecânica Respiratória/fisiologia , Manometria/métodos , Índice de Massa Corporal , PressãoRESUMO
BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Circulação Pulmonar , Estudos Prospectivos , Troca Gasosa Pulmonar , COVID-19/complicações , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Óxido Nítrico , Hipóxia , Insuficiência Respiratória/tratamento farmacológico , Administração por InalaçãoRESUMO
INTRODUCTION: Metformin intoxication causes lactic acidosis by inhibiting Krebs' cycle and oxidative phosphorylation. Continuous renal replacement therapy (CRRT) is recommended for metformin removal in critically ill patients. According to current guidelines, regional citrate anticoagulation (RCA) is the first-line strategy. However, since metformin also inhibits citrate metabolism, a risk of citrate accumulation could be hypothesized. In the present study, we monitored the potential citrate accumulation in metformin-associated lactic acidosis (MALA) patients treated with CRRT and RCA using the physical-chemical approach to acid-base interpretation. METHODS: We collected a case series of 3 patients with MALA. Patients were treated with continuous venovenous hemofiltration (CVVH), and RCA was performed with diluted citrate solution. Citrate accumulation was monitored through two methods: the ratio between total and ionized plasma calcium concentrations (T/I calcium ratio) above 2.5 and the strong ion gap (SIG) to identify an increased concentration of unmeasured anions. Lastly, a mathematical model was developed to estimate the expected citrate accumulation during CVVH and RCA. RESULTS: All 3 patients showed a resolution of MALA after the treatment with CVVH. The T/I calcium ratio was consistently below 2.5, and SIG decreased, reaching values lower than 6 mEq/L after 48 h of CVVH treatment. According to the mathematical model, the estimated SIG without citrate metabolism should have been around 21 mEq/L due to citrate accumulation. CONCLUSIONS: In our clinical management, no signs of citrate accumulation were recorded in MALA patients during treatment with CVVH and RCA. Our data support the safe use of diluted citrate to perform RCA during metformin intoxication.
Assuntos
Acidose Láctica , Terapia de Substituição Renal Contínua , Hemofiltração , Humanos , Ácido Cítrico/uso terapêutico , Cálcio/farmacologia , Citrato de Cálcio , Anticoagulantes/uso terapêutico , Acidose Láctica/induzido quimicamente , Hemofiltração/efeitos adversos , Citratos/efeitos adversos , Terapia de Substituição RenalRESUMO
BACKGROUND: The regional emergency medical service (EMS) in Lombardy (Italy) developed clinical algorithms based on operator-based interviews to detect patients with COVID-19 and refer them to the most appropriate hospitals. Machine learning (ML)-based models using additional clinical and geospatial epidemiological data may improve the identification of infected patients and guide EMS in detecting COVID-19 cases before confirmation with SARS-CoV-2 reverse transcriptase PCR (rtPCR). METHODS: This was an observational, retrospective cohort study using data from October 2020 to July 2021 (training set) and October 2021 to December 2021 (validation set) from patients who underwent a SARS-CoV-2 rtPCR test within 7 days of an EMS call. The performance of an operator-based interview using close contact history and signs/symptoms of COVID-19 was assessed in the training set for its ability to determine which patients had an rtPCR in the 7 days before or after the call. The interview accuracy was compared with four supervised ML models to predict positivity for SARS-CoV-2 within 7 days using readily available prehospital data retrieved from both training and validation sets. RESULTS: The training set includes 264 976 patients, median age 74 (IQR 55-84). Test characteristics for the detection of COVID-19-positive patients of the operator-based interview were: sensitivity 85.5%, specificity 58.7%, positive predictive value (PPV) 37.5% and negative predictive value (NPV) 93.3%. Contact history, fever and cough showed the highest association with SARS-CoV-2 infection. In the validation set (103 336 patients, median age 73 (IQR 50-84)), the best-performing ML model had an AUC of 0.85 (95% CI 0.84 to 0.86), sensitivity 91.4% (95 CI% 0.91 to 0.92), specificity 44.2% (95% CI 0.44 to 0.45) and accuracy 85% (95% CI 0.84 to 0.85). PPV and NPV were 13.3% (95% CI 0.13 to 0.14) and 98.2% (95% CI 0.98 to 0.98), respectively. Contact history, fever, call geographical distribution and cough were the most important variables in determining the outcome. CONCLUSION: ML-based models might help EMS identify patients with SARS-CoV-2 infection, and in guiding EMS allocation of hospital resources based on prespecified criteria.
Assuntos
COVID-19 , Serviços Médicos de Emergência , Humanos , Idoso , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Tosse , Sensibilidade e Especificidade , Aprendizado de MáquinaAssuntos
COVID-19/terapia , Posicionamento do Paciente/métodos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória , Idoso , COVID-19/complicações , Estudos Cross-Over , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Troca Gasosa Pulmonar , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2Assuntos
Infecções por Coronavirus , Serviços Médicos de Emergência , Equipe de Respostas Rápidas de Hospitais , Pneumonia Viral , Algoritmos , Betacoronavirus/patogenicidade , COVID-19 , Defesa Civil , Infecções por Coronavirus/epidemiologia , Serviços Médicos de Emergência/normas , Serviços Médicos de Emergência/estatística & dados numéricos , Planejamento em Saúde , Humanos , Relações Interprofissionais , Itália , Transferência de Pacientes , Pneumonia Viral/epidemiologia , SARS-CoV-2RESUMO
BACKGROUND: Changing trunk inclination affects lung function in patients with ARDS. However, its impacts on PEEP titration remain unknown. The primary aim of this study was to assess, in mechanically ventilated patients with COVID-19 ARDS, the effects of trunk inclination on PEEP titration. The secondary aim was to compare respiratory mechanics and gas exchange in the semi-recumbent (40° head-of-the-bed) and supine-flat (0°) positions following PEEP titration. METHODS: Twelve patients were positioned both at 40° and 0° trunk inclination (randomized order). The PEEP associated with the best compromise between overdistension and collapse guided by Electrical Impedance Tomography (PEEPEIT) was set. After 30 min of controlled mechanical ventilation, data regarding respiratory mechanics, gas exchange, and EIT parameters were collected. The same procedure was repeated for the other trunk inclination. RESULTS: PEEPEIT was lower in the semi-recumbent than in the supine-flat position (8 ± 2 vs. 13 ± 2 cmH2O, p < 0.001). A semi-recumbent position with optimized PEEP resulted in higher PaO2:FiO2 (141 ± 46 vs. 196 ± 99, p = 0.02) and a lower global inhomogeneity index (46 ± 10 vs. 53 ± 11, p = 0.008). After 30 min of observation, a loss of aeration (measured by EIT) was observed only in the supine-flat position (-153 ± 162 vs. 27 ± 203 mL, p = 0.007). CONCLUSIONS: A semi-recumbent position is associated with lower PEEPEIT and results in better oxygenation, less derecruitment, and more homogenous ventilation compared to the supine-flat position.
RESUMO
OBJECTIVE: To describe the health-care resources implemented during the Italian Formula 1 Grand Prix (F1GP) and to calculate the patient presentation rate (PPR) based on both real data and a prediction model. METHODS: Observational and descriptive study conducted from September 9 to September 11, 2022, during the Italian F1GP hosted in Monza (Italy). Maurer's formula was applied to decide the number and type of health resources to be allocated. Patient presentation rate (PPR) was computed based on real data (PPR_real) and based on the Arbon formula (PPR_est). RESULTS: Of 336,000 attendees, n = 263 requested medical assistance with most of them receiving treatment at the advanced medical post, and n = 16 needing transport to the hospital. The PPR_real was 51 for Friday, 78 for Saturday, 134 for Sunday, and 263 when considering the whole event as a single event. The PPR_est resulted in 85 for Friday, 93 for Saturday, 97 for Sunday, and 221 for the total population. CONCLUSIONS: A careful organization of health-care resources could mitigate the impact of the Italian F1GP on local hospital facilities. The Arbon formula is an acceptable model to predict and estimate the number of patients requesting medical assistance, but further investigation needs to be conducted to implement the model and tailor it to broader categories of MGE.
Assuntos
Serviços Médicos de Emergência , Humanos , Eventos de Massa , Aglomeração , Aniversários e Eventos Especiais , ItáliaRESUMO
In this study, a molecularly imprinted polymer (MIP)-based screen-printed cell is developed for detecting phenoxy herbicides using 2-methyl-4-chlorophenoxyacetic acid (MCPA) as the template. MCPA is a phenoxy herbicide widely used since 1945 to control broadleaf weeds via growth regulation, primarily in pasture and cereal crops. The potentiometric cell consists of a silver/silver chloride pseudo-reference electrode and a graphite working electrode coated with a MIP film. The polymeric layer is thermally formed after drop-coating of a pre-polymeric mixture composed of the reagents at the following molar ratio: 1 MCPA: 15 MAA (methacrylic acid): 7 EGDMA (ethylene glycol dimethacrylate). After template removal, the recognition cavities function as the ionophore of a classical ion selective electrode (ISE) membrane. The detected ion is the deprotonated MCPA specie, negatively charged, so the measurements were performed in phosphate buffer at pH 5.5. A linear decrease of the potential with MCPA concentration, ranging from 4 × 10-8 to 1 × 10-6 mol L-1, was obtained. The detection limit and the limit of quantification were, respectively, 10 nmol L-1 and 40 nmol L-1. A Nernstian slope of about -59 mV/dec was achieved. The method has precision and LOD required for MCPA determination in contaminated environmental samples.
Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Herbicidas/análise , Polímeros Molecularmente Impressos , Potenciometria , EletrodosRESUMO
BACKGROUND: Perchloroethylene is a colorless, strong-smelling substance commonly used for dry cleaning. Liver and kidney toxicities and carcinogenicity are well-known occupational hazards caused by chronic perchloroethylene exposure. Acute intoxication by ingestion of nondiluted perchloroethylene is rare in the adult population owing to its strong smell and taste. Very few data are available to physicians managing patients in this situation. CASE PRESENTATION: An 89-year-old Caucasian woman accidentally drank perchloroethylene while visiting her laundry, leading to a coma within a few minutes. The poison control center provided little information about perchloroethylene toxicity after ingestion, including an estimated long biological half-life (144 hour) and detrimental effects to liver and kidneys. A long intensive care unit stay was thus expected, potentially leading to several complications. After intubation, transitory hypoxemia appeared and rapidly resolved, while mild hemodynamic instability was managed with fluid resuscitation and anti-arrhythmic drugs. Twelve hours after perchloroethylene ingestion, the patient suddenly woke up and self-extubated. Less than 24 hours after ingestion, she was discharged from the intensive care unit, and 4 days later she was discharged home. CONCLUSION: The patient drank perchloroethylene from a bottle, which prevented her from smelling it, and owing to its taste, only a small sip was likely drunk. However, a much larger intake was presumed, given her rapid and profound central nervous system depression. This case was challenging owing to the paucity of information available regarding acute perchloroethylene ingestion and the duration and magnitude of its effect. The present report will hopefully be of support for clinicians managing patients with this rare acute intoxication.
Assuntos
Tetracloroetileno , Adulto , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Tetracloroetileno/toxicidade , Antiarrítmicos , Doença Aguda , FígadoRESUMO
Patients with acute pancreatitis (AP) often require ICU admission, especially when signs of multiorgan failure are present, a condition that defines AP as severe. This disease is characterized by a massive pancreatic release of pro-inflammatory cytokines that causes a systemic inflammatory response syndrome and a profound intravascular fluid loss. This leads to a mixed hypovolemic and distributive shock and ultimately to multiorgan failure. Aggressive fluid resuscitation is traditionally considered the mainstay treatment of AP. In fact, all available guidelines underline the importance of fluid therapy, particularly in the first 24-48 h after disease onset. However, there is currently no consensus neither about the type, nor about the optimal fluid rate, total volume, or goal of fluid administration. In general, a starting fluid rate of 5-10 ml/kg/h of Ringer's lactate solution for the first 24 h has been recommended. Fluid administration should be aggressive in the first hours, and continued only for the appropriate time frame, being usually discontinued, or significantly reduced after the first 24-48 h after admission. Close clinical and hemodynamic monitoring along with the definition of clear resuscitation goals are fundamental. Generally accepted targets are urinary output, reversal of tachycardia and hypotension, and improvement of laboratory markers. However, the usefulness of different endpoints to guide fluid therapy is highly debated. The importance of close monitoring of fluid infusion and balance is acknowledged by most available guidelines to avoid the deleterious effect of fluid overload. Fluid therapy should be carefully tailored in patients with severe AP, as for other conditions frequently managed in the ICU requiring large fluid amounts, such as septic shock and burn injury. A combination of both noninvasive clinical and invasive hemodynamic parameters, and laboratory markers should guide clinicians in the early phase of severe AP to meet organ perfusion requirements with the proper administration of fluids while avoiding fluid overload. In this narrative review the most recent evidence about fluid therapy in severe AP is discussed and an operative algorithm for fluid administration based on an individualized approach is proposed.
RESUMO
BACKGROUND: External chest-wall compression (ECC) is sometimes used in ARDS patients despite lack of evidence. It is currently unknown whether this practice has any clinical benefit in patients with COVID-19 ARDS (C-ARDS) characterized by a respiratory system compliance (Crs) < 35 mL/cmH2O. OBJECTIVES: To test if an ECC with a 5 L-bag in low-compliance C-ARDS can lead to a reduction in driving pressure (DP) and improve gas exchange, and to understand the underlying mechanisms. METHODS: Eleven patients with low-compliance C-ARDS were enrolled and underwent 4 steps: baseline, ECC for 60 min, ECC discontinuation and PEEP reduction. Respiratory mechanics, gas exchange, hemodynamics and electrical impedance tomography were recorded. Four pigs with acute ARDS were studied with ECC to understand the effect of ECC on pleural pressure gradient using pleural pressure transducers in both non-dependent and dependent lung regions. RESULTS: Five minutes of ECC reduced DP from baseline 14.2 ± 1.3 to 12.3 ± 1.3 cmH2O (P < 0.001), explained by an improved lung compliance. Changes in DP by ECC were strongly correlated with changes in DP obtained with PEEP reduction (R2 = 0.82, P < 0.001). The initial benefit of ECC decreased over time (DP = 13.3 ± 1.5 cmH2O at 60 min, P = 0.03 vs. baseline). Gas exchange and hemodynamics were unaffected by ECC. In four pigs with lung injury, ECC led to a decrease in the pleural pressure gradient at end-inspiration [2.2 (1.1-3) vs. 3.0 (2.2-4.1) cmH2O, P = 0.035]. CONCLUSIONS: In C-ARDS patients with Crs < 35 mL/cmH2O, ECC acutely reduces DP. ECC does not improve oxygenation but it can be used as a simple tool to detect hyperinflation as it improves Crs and reduces Ppl gradient. ECC benefits seem to partially fade over time. ECC produces similar changes compared to PEEP reduction.
RESUMO
BACKGROUND: Individuals with cystic fibrosis (CF) have persistent lung infections, necessitating the frequent use of antibiotics for pulmonary exacerbations. Some respiratory pathogens have intrinsic resistance to the currently available antibiotics, and any pathogen may acquire resistance over time, posing a challenge to CF care. Gaseous nitric oxide has been shown to have antimicrobial activity against a wide variety of microorganisms, including common CF pathogens, and offers a potential inhaled antimicrobial therapy. Case Presentation. Here, we present the case of a 16-year-old female with CF who experienced a precipitous decline in lung function over the prior year in conjunction with worsening antibiotic resistance of her primary pathogen, Burkholderia multivorans. She received 46 intermittent inhalations of 160 parts-per-million nitric oxide over a 28-day period. The gas was administered via a mechanical ventilator fitted with nitrogen dioxide scavenging chambers. CONCLUSIONS: High-dose inhaled nitric oxide was safe, well tolerated, and showed clinical benefit in an adolescent with cystic fibrosis and pulmonary colonization with Burkholderia multivorans.
RESUMO
Introduction: the current worldwide outbreak of Coronavirus disease 2019 (COVID-19) due to a novel coronavirus (SARS-CoV-2) is seriously threatening the public health. The number of infected patients is continuously increasing and the need for Intensive Care Unit admission ranges from 5 to 26%. The mortality is reported to be around 3.4% with higher values for the elderly and in patients with comorbidities. Moreover, this condition is challenging the healthcare system where the outbreak reached its highest value. To date there is still no available treatment for SARS-CoV-2. Clinical and preclinical evidence suggests that nitric oxide (NO) has a beneficial effect on the coronavirus-mediated acute respiratory syndrome, and this can be related to its viricidal effect. The time from the symptoms' onset to the development of severe respiratory distress is relatively long. We hypothesize that high concentrations of inhaled NO administered during early phases of COVID-19 infection can prevent the progression of the disease. Methods and analysis: This is a multicenter randomized controlled trial. Spontaneous breathing patients admitted to the hospital for symptomatic COVID-19 infection will be eligible to enter the study. Patients in the treatment group will receive inhaled NO at high doses (140-180 parts per million) for 30 minutes, 2 sessions every day for 14 days in addition to the hospital care. Patient in the control group will receive only hospital care. The primary outcome is the percentage of patients requiring endotracheal intubation due to the progression of the disease in the first 28 days from enrollment in the study. Secondary outcomes include mortality at 28 days, proportion of negative test for SARS-CoV-2 at 7 days and time to clinical recovery. Ethics and dissemination: The trial protocol has been approved at the Investigation Review Boards of Xijing Hospital (Xi'an, China) and The Partners Human Research Committee of Massachusetts General Hospital (Boston, USA) is pending. Recruitment is expected to start in March 2020. Results of this study will be published in scientific journals, presented at scientific meetings, and on related website or media in fighting this widespread contagious disease.
RESUMO
BACKGROUND: A lung-protective mechanical ventilation strategy has become the hallmark of ventilation management for patients with acute respiratory failure. However, some patients progress to more severe forms of acute respiratory failure with refractory hypoxemia. In such circumstances, individualized titration of mechanical ventilation according to the patient's specific respiratory and cardiovascular pathophysiology is desirable. A lung rescue team (LRT) was recently established at our institution to improve the medical care of patients with acute respiratory failure when conventional treatment fails. The aim of this report is to describe the consultation processes, the cardiopulmonary assessment, and the procedures of the LRT. METHODS: This was a retrospective review of the LRT management of patients with acute respiratory failure and refractory hypoxemia at Massachusetts General Hospital in Boston, Massachusetts. The LRT is composed of a critical care physician, the ICU respiratory therapist on duty, the ICU nurse on duty, and 2 critical care fellows. In the LRT approach, respiratory mechanics are evaluated through lung recruitment maneuvers and decremental PEEP trials by means of 3 tools: esophageal manometry, echocardiography, and electrical impedance tomography lung imaging. RESULTS: The LRT was consulted 89 times from 2014 to 2019 for evaluation and management of severely critically ill patients with acute respiratory failure and refractory hypoxemia on mechanical ventilation. The LRT was requested a median of 2 (interquartile range 1-6) d after intubation to optimize mechanical ventilation and to titrate PEEP in 77 (86%) subjects, to manage ventilation in 8 (9%) subjects on extracorporeal membrane oxygenation (ECMO), and to manage weaning strategy from mechanical ventilation in 4 (5%) subjects. The LRT found consolidations with atelectasis responsive to recruitment maneuvers in 79% (n = 70) of consultations. The LRT findings translated into a change of care in 81% (n = 72) of subjects. CONCLUSIONS: The LRT individualized the management of severe acute respiratory failure. The LRT consultations were shown to be effective, safe, and efficient, with an impact on decision-making in the ICU.
Assuntos
Cuidados Críticos/métodos , Equipe de Assistência ao Paciente , Insuficiência Respiratória/terapia , Adulto , Idoso , Boston , Tomada de Decisão Clínica , Oxigenação por Membrana Extracorpórea , Feminino , Humanos , Hipóxia/terapia , Pulmão , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória , Estudos RetrospectivosRESUMO
Objective: To quantify how the first public announcement of confirmed coronavirus disease 2019 (COVID-19) in Italy affected a metropolitan region's emergency medical services (EMS) call volume and how rapid introduction of alternative procedures at the public safety answering point (PSAP) managed system resources. Methods: PSAP processes were modified over several days including (1) referral of non-ill callers to public health information call centers; (2) algorithms for detection, isolation, or hospitalization of suspected COVID-19 patients; and (3) specialized medical teams sent to the PSAP for triage and case management, including ambulance dispatches or alternative dispositions. Call volumes, ambulance dispatches, and response intervals for the 2 weeks after announcement were compared to 2017-2019 data and the week before. Results: For 2 weeks following outbreak announcement, the primary-level PSAP (police/fire/EMS) averaged 56% more daily calls compared to prior years and recorded 9281 (106% increase) on Day 4, averaging â¼400/hour. The secondary-level (EMS) PSAP recorded an analogous 63% increase with 3863 calls (â¼161/hour; 264% increase) on Day 3. The COVID-19 response team processed the more complex cases (n = 5361), averaging 432 ± 110 daily (â¼one-fifth of EMS calls). Although community COVID-19 cases increased exponentially, ambulance response intervals and dispatches (averaging 1120 ± 46 daily) were successfully contained, particularly compared with the week before (1174 ± 40; P = 0.02). Conclusion: With sudden escalating EMS call volumes, rapid reorganization of dispatch operations using tailored algorithms and specially assigned personnel can protect EMS system resources by optimizing patient dispositions, controlling ambulance allocations and mitigating hospital impact. Prudent population-based disaster planning should strongly consider pre-establishing similar highly coordinated medical taskforce contingencies.
RESUMO
Acute kidney injury is a common complication after cardiac surgery that is associated with high postoperative morbidity and mortality. Levels of hemolysis are associated closely with the incidence and severity of kidney injury after cardiac surgery. Hemolysis is caused by prolonged surgical procedures and blood transfusions from cell-saver devices and is associated with the use of cardiopulmonary bypass. Plasma oxyhemoglobin is released into the circulation by damaged red blood cells that, via a dioxygenation reaction, depletes vascular nitric oxide (NO), a potent vasodilator molecule responsible for modulating organ perfusion and vascular homeostasis. Depleted plasma NO and increased levels of plasma oxyhemoglobin in the bloodstream lead to impairment of organ perfusion, inflammation, oxidative stress, and direct tubular injury, which, together, contribute to the development of renal injury after cardiac surgery. The administration of NO, a gas originally approved to treat pulmonary hypertension, maintains organ perfusion by preventing vascular NO depletion. In addition, this treatment improves cardiac output by reducing pulmonary vascular resistance and right heart workload. The clinical evidence of renal protection of NO gas therapy is supported by preclinical animal studies exploring the extrapulmonary protective effects of NO. Recent clinical trials showed a significant reduction of postoperative acute kidney injury when NO gas was administered during and after cardiac surgery.
Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hemólise/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Medição de RiscoRESUMO
BACKGROUND: Brain-injured patients frequently require tracheostomy, but no technique has been shown to be the gold standard for these patients. We developed and introduced into standard clinical practice an innovative bedside translaryngeal tracheostomy (TLT) technique aided by suspension laryngoscopy (modified TLT). During this procedure, the endotracheal tube is left in place until the airway is secured with the new tracheostomy. This study assessed the clinical impact of this technique in brain-injured patients. MATERIALS AND METHODS: This is a retrospective analysis of prospectively collected data from adult brain-injured patients who had undergone modified TLT during the period spanning from January 2010 to December 2016 at the Neurointensive care unit, San Gerardo Hospital (Monza, Italy). The incidence of intraprocedural complications, including episodes of intracranial hypertension (intracranial pressure [ICP] >20 mm Hg), was documented. Neurological, ventilatory, and hemodynamic parameters were retrieved before, during, and after the procedure. Risk factors for complications and intracranial hypertension were assessed by univariate logistic analysis. Data are presented as n (%) and median (interquartile range) for categorical and continuous variables, respectively. RESULTS: A total of 199 consecutive brain-injured patients receiving modified TLT were included. An overall 52% male individuals who were 66 (54 to 74) years old and who had an admission Glasgow Coma Scale of 7 (6 to 10) were included in the cohort. Intracerebral hemorrhage (30%) was the most frequent diagnosis. Neurointensivists performed 130 (65%) of the procedures. Patients underwent tracheostomy 10 (7 to 13) days after intensive care unit admission. Short (ie, <2 min) and clinically uneventful increases in ICP>20 mm Hg were observed in 11 cases. Overall, the procedure was associated with an increase in ICP from 7 (4 to 10) to 12 (7 to 18) mm Hg (P<0.001). Compared with baseline, cerebral perfusion pressure (CPP), respiratory variables, and hemodynamics were unchanged during the procedure (P-value, not significant). Higher baseline ICP and core temperature were associated with an increased risk of complications and intracranial hypertension. Complication rates were low: 1 procedure had to be converted to a surgical tracheostomy, and 1 (0.5%) episode of minor bleeding and 5 (2.5%) of minor non-neurological complications were recorded. Procedures performed by intensivists did not have a higher risk of complications compared with those performed by ear, nose, and throat specialists. CONCLUSIONS: A modified TLT (by means of suspension laryngoscopy) performed by neurointensivists is feasible in brain-injured patients and does not adversely impact ICP and CPP.