Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Carcinogenesis ; 45(6): 436-449, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470060

RESUMO

Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.


Assuntos
Carcinoma de Células Escamosas , Diferenciação Celular , Fenretinida , Queratinócitos , Neoplasias Bucais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Diferenciação Celular/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/prevenção & controle , Fenretinida/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/metabolismo , Quimioprevenção/métodos , Receptores do Ácido Retinoico/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Mucosa Bucal/patologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo
2.
Environ Sci Technol ; 58(20): 8966-8975, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722667

RESUMO

The absolute radical quantum yield (Φ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ•OH and ΦSO4•- at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ•OHPMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ•OHPMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to ΦSO4•-PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ, serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.


Assuntos
Radical Hidroxila , Sulfatos , Sulfatos/química , Radical Hidroxila/química , Purificação da Água/métodos , Oxirredução , Peróxido de Hidrogênio/química
3.
Environ Sci Technol ; 58(1): 847-858, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153291

RESUMO

The benchmark advanced oxidation technology (AOT) that uses UV/H2O2 integrated with hypochlorous species exhibits great potential in removing micropollutants and enhancing wastewater treatability for reclamation purposes. Although efforts have been made to study the reactions of H2O2 with hypochlorous species, there exist great discrepancies in the order of reaction kinetics, the rate constants, and the molecule-level mechanisms. This results in an excessive use of hypochlorous reagents and system underperformance during treatment processes. Herein, the titled reaction was investigated systematically through complementary experimental and theoretical approaches. Stopped-flow spectroscopic measurements revealed a combination of bi- and trimolecular reaction kinetics. The bimolecular pathway dominates at low H2O2 concentrations, while the trimolecular pathway dominates at high H2O2 concentrations. Both reactions were simulated using direct dynamics trajectories, and the pathways identified in the trajectories were further validated by high-level quantum chemistry calculations. The theoretical results not only supported the spectroscopic data but also elucidated the molecule-level mechanisms and helped to address the origin of the discrepancies. In addition, the impact of the environmental matrix was evaluated by using two waters with discrete characteristics, namely municipal wastewater and ammonium-rich wastewater. Municipal wastewater had a negligible matrix effect on the reaction kinetics of H2O2 and the hypochlorous species, making it a highly suitable candidate for this integration technique. The obtained in-depth reaction mechanistic insights will enable the development of a viable and economical technology for safe water reuse.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio/química , Purificação da Água/métodos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Oxirredução
4.
Nucleic Acids Res ; 50(14): 7829-7841, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35880577

RESUMO

The kinetics of DNA hybridization are fundamental to biological processes and DNA-based technologies. However, the precise physical mechanisms that determine why different DNA sequences hybridize at different rates are not well understood. Secondary structure is one predictable factor that influences hybridization rates but is not sufficient on its own to fully explain the observed sequence-dependent variance. In this context, we measured hybridization rates of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious physically justified model to quantify our observations. Accounting only for the combinatorics of complementary nucleating interactions and their sequence-dependent stability, the model achieves good correlation with experiment with only two free parameters. Our results indicate that greater repetition of Watson-Crick pairs increases the number of initial states able to proceed to full hybridization, with the stability of those pairings dictating the likelihood of such progression, thus providing new insight into the physical factors underpinning DNA hybridization rates.


Assuntos
DNA , Conformação de Ácido Nucleico , DNA/química , Cinética , Hibridização de Ácido Nucleico , Termodinâmica
5.
Environ Sci Technol ; 57(26): 9832-9842, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327199

RESUMO

Photochemical transformation is an important process that involves trace organic contaminants (TrOCs) in sunlit surface waters. However, the environmental implications of their self-photosensitization pathway have been largely overlooked. Here, we selected 1-nitronaphthalene (1NN), a representative nitrated polycyclic aromatic hydrocarbon, to study the self-photosensitization process. We investigated the excited-state properties and relaxation kinetics of 1NN after sunlight absorption. The intrinsic decay rate constants of triplet (31NN*) and singlet (11NN*) excited states were estimated to be 1.5 × 106 and 2.5 × 108 s-1, respectively. Our results provided quantitative evidence for the environmental relevance of 31NN* in waters. Possible reactions of 31NN* with various water components were evaluated. With the reduction and oxidation potentials of -0.37 and 1.95 V, 31NN* can be either oxidized or reduced by dissolved organic matter isolates and surrogates. We also showed that hydroxyl (•OH) and sulfate (SO4•-) radicals can be generated via the 31NN*-induced oxidation of inorganic ions (OH- and SO42-, respectively). We further investigated the reaction kinetics of 31NN* and OH- forming •OH, an important photoinduced reactive intermediate, through complementary experimental and theoretical approaches. The rate constants for the reactions of 31NN* with OH- and 1NN with •OH were determined to be 4.22 × 107 and 3.95 ± 0.01 × 109 M-1 s-1, respectively. These findings yield new insights into self-photosensitization as a pathway for TrOC attenuation and provide more mechanistic details into their environmental fate.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Nitratos , Fotólise , Compostos Orgânicos , Radical Hidroxila/química , Cinética , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 57(33): 12153-12179, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535865

RESUMO

Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Oxirredução , Águas Residuárias , Purificação da Água/métodos
7.
Carcinogenesis ; 43(9): 851-864, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-35974187

RESUMO

Basement membrane invasion defines malignant transformation of surface premalignancy. Treatment of oral squamous cell carcinoma (OSCC) cells with the synthetic vitamin A derivative, fenretinide (4HPR), induces numerous cancer-preventive effects including suppression of basement membrane invasion, elimination of anchorage-independent growth, disruption of actin cytoskeletal components and inhibition of the invasion-enabling focal adhesive kinase. The purpose of this study was to elucidate 4HPR's effects on additional invasion-relevant mechanisms including matrix metalloproteinase (MMP) activation and function, cell-extracellular matrix (ECM) attachments and interaction with a kinase that is essential for the epithelial-myoepithelial transformation i.e. c-Jun NH2-terminal kinase (JNK). Our data revealed that 4HPR binds with high affinity to the ATP-binding site of all three JNK isoforms with concurrent suppression of kinase function. Additional studies showed 4HPR treatment inhibited both OSCC cell-ECM adhesion and MMP activation and function. JNK downregulation and induced expression studies confirmed that the JNK3 isoform conveyed that largest impact on OSCC migration and invasion. Biodegradable polymeric implants formulated to preserve 4HPR's function and bioavailability were employed to assess 4HPR's chemopreventive impact on an OSCC tumor induction model. These studies revealed 4HPR local delivery significantly inhibited OSCC tumor size, mitotic indices and expression of the endothelial marker, erythroblast transformation-specific-related gene with concurrent increases in tumor apoptosis (cleaved caspase-3). Collectively, these data show that 4HPR suppresses invasion at multiple sites including 'outside-in' signaling, cell-ECM interactions and suppression of MMPs. These functions are also essential for physiologic function. Regulation is therefore essential and reinforces the pharmacologic advantage of local delivery chemopreventive formulations. .


Assuntos
Carcinoma de Células Escamosas , Fenretinida , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Fenretinida/farmacologia , Fenretinida/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Caspase 3 , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Vitamina A , Actinas , Matriz Extracelular/patologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Metaloproteinases da Matriz , Trifosfato de Adenosina , Invasividade Neoplásica
8.
PLoS Comput Biol ; 17(4): e1008054, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872296

RESUMO

Transfer entropy (TE) is a widely used measure of directed information flows in a number of domains including neuroscience. Many real-world time series for which we are interested in information flows come in the form of (near) instantaneous events occurring over time. Examples include the spiking of biological neurons, trades on stock markets and posts to social media, amongst myriad other systems involving events in continuous time throughout the natural and social sciences. However, there exist severe limitations to the current approach to TE estimation on such event-based data via discretising the time series into time bins: it is not consistent, has high bias, converges slowly and cannot simultaneously capture relationships that occur with very fine time precision as well as those that occur over long time intervals. Building on recent work which derived a theoretical framework for TE in continuous time, we present an estimation framework for TE on event-based data and develop a k-nearest-neighbours estimator within this framework. This estimator is provably consistent, has favourable bias properties and converges orders of magnitude more quickly than the current state-of-the-art in discrete-time estimation on synthetic examples. We demonstrate failures of the traditionally-used source-time-shift method for null surrogate generation. In order to overcome these failures, we develop a local permutation scheme for generating surrogate time series conforming to the appropriate null hypothesis in order to test for the statistical significance of the TE and, as such, test for the conditional independence between the history of one point process and the updates of another. Our approach is shown to be capable of correctly rejecting or accepting the null hypothesis of conditional independence even in the presence of strong pairwise time-directed correlations. This capacity to accurately test for conditional independence is further demonstrated on models of a spiking neural circuit inspired by the pyloric circuit of the crustacean stomatogastric ganglion, succeeding where previous related estimators have failed.


Assuntos
Potenciais de Ação , Entropia , Potenciais Evocados , Neurônios/fisiologia , Modelos Neurológicos , Distribuição de Poisson
9.
Environ Sci Technol ; 56(1): 624-633, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919383

RESUMO

Perfluorocarboxylic acids (PFCAs) exhibit strong persistence in sunlit surface waters and in radical-based treatment processes, where superoxide radical (O2•-) is an important and abundant reactive oxygen species. Given that the role of O2•- during the transformation of PFCAs remains largely unknown, we investigated the kinetics and mechanisms of O2•--mediated PFCAs attenuation through complementary experimental and theoretical approaches. The aqueous-phase rate constants between O2•- and C3-C8 PFCAs were measured using a newly designed in situ spectroscopic system. Mechanistically, bimolecular nucleophilic substitution (SN2) is most likely to be thermodynamically feasible, as indicated by density functional theory calculations at the CBS-QB3 level of theory. This pathway was then investigated by ab initio molecular dynamics simulation with free-energy samplings. As O2•- approaches PFCA, the C-F bond at the alpha carbon is spontaneously stretched, leading to the bond cleavage. The solvation mechanism for O2•--mediated PFCA degradation was also elucidated. Our results indicated that although the less polar solvent enhanced the nucleophilicity of O2•-, it also decreased the desolvation process of PFCAs, resulting in reduced kinetics. With these quantitative and mechanistic results, we achieved a defined picture of the O2•--initiated abatement of PFCAs in natural and engineered waters.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Ácidos Carboxílicos/química , Fluorocarbonos/química , Superóxidos , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
Environ Res ; 201: 111523, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133974

RESUMO

Advanced oxidation technologies (AOTs) have been intensely used to eliminate various organic pollutants in engineering waters. In this context, we investigated the kinetics and mechanisms of the sulfate radical (SO4-)-mediated degradation of lindane in UV/peroxydisulfate system, and compared results with previous studies on SO4--based AOTs for destruction of lindane. The second order rate constant (k) value between SO4- and lindane was determined to be (8.95 ± 0.29) × 106 M-1 s-1via competition kinetics using p-cyanobenzoic acid as reference compound, which is close to the theoretically calculated value of 4.41 × 107 M-1 s-1, that was performed at SMD/M05-2X/6-311++G**//M05-2X/6-31+G** level of theory using density functional theory (DFT) approach. H-atom abstraction pathway was calculated to be thermodynamically favorable and kinetically dominant. In the combined experimental and theoretical study, we aim for a better understanding on the degradation kinetics and mechanisms of lindane, serving as a starting point for more attention to SO4--mediated degradation kinetics of cycloaliphatic compounds in future.


Assuntos
Hexaclorocicloexano , Poluentes Químicos da Água , Radical Hidroxila , Cinética , Modelos Teóricos , Oxirredução , Sulfatos , Poluentes Químicos da Água/análise
11.
Entropy (Basel) ; 22(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33285908

RESUMO

We investigated phase transitions in spatial connectivity during influenza pandemics, relating epidemic thresholds to the formation of clusters defined in terms of average infection. We employed a large-scale agent-based model of influenza spread at a national level: the Australian Census-based Epidemic Model (AceMod). In using the AceMod simulation framework, which leverages the 2016 Australian census data and generates a surrogate population of ≈23.4 million agents, we analysed the spread of simulated epidemics across geographical regions defined according to the Australian Statistical Geography Standard. We considered adjacent geographic regions with above average prevalence to be connected, and the resultant spatial connectivity was then analysed at specific time points of the epidemic. Specifically, we focused on the times when the epidemic prevalence peaks, either nationally (first wave) or at a community level (second wave). Using the percolation theory, we quantified the connectivity and identified critical regimes corresponding to abrupt changes in patterns of the spatial distribution of infection. The analysis of criticality is confirmed by computing Fisher Information in a model-independent way. The results suggest that the post-critical phase is characterised by different spatial patterns of infection developed during the first or second waves (distinguishing urban and rural epidemic peaks).

12.
Environ Sci Technol ; 53(1): 342-353, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30500178

RESUMO

The role of soluble microbial products (SMP), the most important component of effluent organic matter from municipal wastewater treatment plants, in sulfate radical (SO4•-)-based advanced oxidation technologies (AOTs) remains substantially unclear. In this study, we first utilized a suite of macro- and microanalytical techniques to characterize the SMP from a membrane bioreactor for its fundamental molecular, spectroscopic, and reactivity properties. The degradation kinetics of three representative pharmaceuticals (i.e., naproxen, gemfibrozil, and sulfadiazine) in the presence of SMP was significantly reduced as compared to in its absence. Possible mechanisms for the interference by SMP in degrading these target compounds (TCs) were investigated. The low percentage of bound TCs to SMP ruled out the cage effect. The measurement of steady-state 1O2 concentration indicated that formation of 1O2 upon UV irradiation on SMP was not primarily responsible for the degradation of TCs. However, the comparative and quenching results reveal that SMP absorbs UV light acting as an inner filter toward the TCs, and meanwhile scavenges SO4•- with a high second-order rate constant of 2.48 × 108 MC-1 s-1.


Assuntos
Sulfatos , Águas Residuárias , Reatores Biológicos , Cinética
13.
Environ Sci Technol ; 52(7): 4313-4323, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518313

RESUMO

Enhancing activated sludge dewaterability is of scientific and engineering importance in the face of accelerated urbanization and stringent environmental regulations. In this study, we investigated the integration of acidification and ultrasound (A/US) treatment for improving sludge dewaterability at both bench- and pilot-scales. Our results showed that the A/US process exhibited significantly improved sludge dewatering performance, characterized by capillary suction time, cake moisture, and water/solid content of sludge cake. Synergistic dewatering mechanisms were elucidated with a suite of macro and spectroscopic evidence. Characterization of treated sludge revealed that US-induced thermal, mechanical shearing force, and radical oxidation effects disrupts floc cells and accelerates the decomposition of extracellular polymeric substances (EPS), releasing bound water into the bulk phase. In addition to enhancing hydrolysis of EPS, the acidic pH environment caused the protonation of functional groups on EPS, facilitating the reflocculation of US decomposed sludge for improved filterability. Our bench-scale and pilot-scale investigations provide a mechanistic basis for better understanding of the A/US process, and enable development of a viable and economical dewatering technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Concentração de Íons de Hidrogênio , Oxirredução , Água
15.
Environ Sci Technol ; 49(22): 13322-30, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477990

RESUMO

The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.


Assuntos
Poluentes Atmosféricos/química , Siloxanas/química , Atmosfera , Gases/química , Hidrogênio/química , Radical Hidroxila/química , Cinética , Modelos Químicos , Oxirredução , Temperatura , Termodinâmica
16.
Environ Sci Technol ; 49(22): 13394-402, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26451961

RESUMO

The sulfate radical anion (SO4•­) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•­ and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•­) than that of H­atom abstraction, corroborating the SO4•­ reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO­EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•­ to a great extent with the standardized QSAR model: ln kSO4•­ = 26.8­3.97 × #O:C ­ 0.746 × (ELUMO­EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•­ reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•­ during wastewater treatment processes.


Assuntos
Relação Quantitativa Estrutura-Atividade , Sulfatos/química , Poluentes Químicos da Água/química , Carbono/química , Compostos Orgânicos/química , Oxirredução , Oxigênio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
17.
Water Res ; 261: 122023, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991243

RESUMO

The roles of superoxide radical (O2•-) in the domains of physiological, physical, and material chemistry are becoming increasingly recognized. Although extensive efforts have been directed to understand O2•- functions in diverse aquatic systems, there is a lack of systematic and in-depth review for its kinetics and mechanisms in various environmental scenarios. This review aims to bridge this gap through discussion of O2•- generation pathways under both natural and controlled conditions. The merits and limitations of the generation and detection methods under various conditions are compared, with emphasis on different approaches for the determination of O2•--triggered reaction kinetics. We summarize the reaction rate constants of O2•- with organic contaminants covering a wide diversity of structures and reactivity. The comparison indicates that O2•- exhibits weak reactivity with most contaminants and lacks selectivity towards compounds with different functional groups, except with quinones which exhibit higher reactivity compared to non-quinones. Further, the reaction mechanisms, namely single electron transfer, nucleophilic substitution, hydrogen atom abstraction, and radical-adduct formation, are critically evaluated. Various environmental implications of O2•- are highlighted including maintenance of biogeochemical iron cycle, synthesis of nanoparticles for antibacterial purposes, desorption of contaminants from heterogeneous interfaces, and synergetic degradation of contaminants.

19.
Water Res ; 244: 120526, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672949

RESUMO

Confronted with the imperative crisis of water quality deterioration, the pursuit of state-of-the-art decontamination technologies for a sustainable future never stops. Fitting into the framework of suitability, advanced oxidation processes have been demonstrated as powerful technologies to produce highly reactive radicals for the degradation of toxic and refractory contaminants. Therefore, investigations on their radical-induced degradation have been the subject of scientistic and engineering interests for decades. To better understand the transient nature of these radical species and rapid degradation processes, laser flash photolysis (LFP) has been considered as a viable and powerful technique due to its high temporal resolution and rapid response. Although a number of studies exploited LFP for one (or one class of) specific reaction(s), reactions of many possible contaminants with radicals are largely unknown. Therefore, there is a pressing need to critically review its implementation for kinetic quantification and mechanism elucidation. Within this context, we introduce the development process and milestones of LFP with emphasis on compositions and operation principles. We then compare the specificity and suitability of different spectral modes for monitoring radicals and their decay kinetics. Radicals with high environmental relevance, namely hydroxyl radical, sulfate radical, and reactive chlorine species, are selected, and we discuss their generation, detection, and implications within the frame of LFP. Finally, we highlight remaining challenges and future perspectives. This review aims to advance our understandings of the implementation of LFP in radical-induced transient processes, and yield new insights for extrapolating this pump-probe technique to make significant strides in environmental implications.


Assuntos
Cloretos , Cloro , Fotólise , Halogênios , Lasers
20.
Water Res ; 235: 119838, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921358

RESUMO

Electro-Fenton (EF) process represents an energy-efficient and scalable advanced oxidation technology (AOT) for micropollutants removal in wastewaters. However, mechanistic profiling and quantitation of contribution of each subprocess (i.e., adsorption at electrode, coagulation, radical oxidation, electrode oxidation/reduction, and H2O2 oxidation) to the overall degradation are substantially unclear, resulting in difficulty in tunability and optimization for different treatment scenarios. In this study, we investigated degradation kinetics of a target micropollutant in an EF system. The contribution of all possible subprocesses was elucidated by comparing the observed degradation rate in the EF system with the sum of the kinetics in each subprocess. The results indicated that the overall degradation can be attributed to the synergistic action of the above-mentioned subprocesses. The radical oxidation accounts for 87% elimination, followed by electrode reoxidation/reduction of 7.7%. These results not only advance the fundamental understanding of synergistic effect in EF system, but also open new possibilities to optimize these techniques for better scalability. In addition, the methodology in this study could potentially boost the in-depth exploration of subprocess contribution in other Fenton-like systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Águas Residuárias , Purificação da Água/métodos , Oxirredução , Poluentes Químicos da Água/análise , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA