Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 469(7328): 72-5, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21209660

RESUMO

Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging. Here we show that Vernier complexes can solve this problem: if the number of binding sites on the template, n(T), is not a multiple of the number of binding sites on the molecular building blocks, n(B), then small templates can direct the assembly of relatively large Vernier complexes where the number of binding sites in the product, n(P), is the lowest common multiple of n(B) and n(T) (refs 8, 9). We illustrate the value of this concept for the covalent synthesis of challenging targets by using a simple six-site template to direct the synthesis of a 12-porphyrin nano-ring with a diameter of 4.7 nm, thus establishing Vernier templating as a powerful new strategy for the synthesis of large monodisperse macromolecules.

2.
Chemistry ; 20(40): 12826-34, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25154736

RESUMO

Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier-templated synthesis of a 12-porphyrin nanoring. NMR and small-angle X-ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo-oligomerization reaction. UV/Vis/NIR titrations show that the three-component assembly of the 12-porphyrin nanoring figure-of-eight template complex displays high allosteric cooperativity and chelate cooperativity. This nanoring-template 1:2 complex is among the largest synthetic molecules to have been characterized by single-crystal analysis. It crystallizes as a racemate, with an angle of 27° between the planes of the two template units. The crystal structure reveals many unexpected intramolecular C-H⋅⋅⋅N contacts involving the tert-butyl side chains. Scanning tunneling microscopy (STM) experiments show that molecules of the 12-porphyrin template complex can remain intact on the gold surface, although the majority of the material unfolds into the free nanoring during electrospray deposition.

3.
J Am Chem Soc ; 135(34): 12798-807, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23909839

RESUMO

Formation of stacked aggregates can dramatically alter the properties of aromatic π-systems, yet the solution-phase structure elucidation of these aggregates is often impossible because broad distributions of species are formed, giving uninformative spectroscopic data. Here, we show that a butadiyne-linked zinc porphyrin tetramer forms a remarkably well-defined aggregate, consisting of exactly three molecules, in a parallel stacked arrangement (in chloroform at room temperature; concentration 1 mM-0.1 µM). The aggregate has a mass of 14.7 kDa. Unlike most previously reported aggregates, it gives sharp NMR resonances and aggregation is in slow exchange on the NMR time scale. The structure was elucidated using a range of NMR techniques, including diffusion-editing, (1)H-(29)Si HMBC, (1)H-(1)H COSY, TOCSY and NOESY, and (1)H-(13)C edited HSQC spectroscopy. Surprisingly, the (1)H-(1)H COSY spectrum revealed many long-range residual dipolar couplings (RDCs), and detailed analysis of magnetic field-induced (1)H-(13)C RDCs provided further evidence for the structural model. The size and shape of the aggregate is supported by small-angle X-ray scattering (SAXS) data. It adopts a geometry that maximizes van der Waals contact between the porphyrins, while avoiding clashes between side chains. The need for interdigitation of the side chains prevents formation of stacks consisting of more than three layers. Although a detailed analysis has only been carried out for one compound (the tetramer), comparison with the NMR spectra of other oligomers indicates that they form similar three-layer stacks. In all cases, aggregation can be prevented by addition of pyridine, although at low pyridine concentrations, disaggregation takes many hours to reach equilibrium.

4.
Nano Lett ; 11(6): 2451-6, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21591769

RESUMO

Here we report organic light-emitting diodes incorporating linear and cyclic porphyrin hexamers which have red-shifted emission (λ(PL) = 873 and 920 nm, respectively) compared to single porphyrin rings as a consequence of their extended π-conjugation. We studied the photoluminescence and electroluminescence of blends with poly(9,9'-dioctylfluorene-alt-benzothiadiazole), demonstrating a high photoluminescence quantum efficiency of 7.7% for the linear hexamer when using additives to prevent aggregation and achieving high color purity near-infrared electroluminescence.


Assuntos
Luminescência , Metaloporfirinas/química , Estrutura Molecular , Teoria Quântica
5.
J Am Chem Soc ; 133(51): 20962-9, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22091586

RESUMO

Complexes of zinc porphyrin oligomers with multivalent ligands can be denatured by adding a large excess of a monodentate ligand, such as quinuclidine. We have used denaturation titrations to determine the stabilities of the complexes of a cyclic zinc-porphyrin hexamer with multidentate ligands with two to six pyridyl coordination sites. The corresponding complexes of linear porphyrin oligomers were also investigated. The results reveal that the stepwise effective molarities (EMs) for the third through sixth intramolecular coordination events with the cyclic hexamer are extremely high (EM = 10(2)-10(3) M), whereas the values for the linear porphyrin oligomers are modest (EM ≈ 0.05 M). The speciation profiles for the denaturation reactions demonstrate that intermediate species are not significantly populated and that these equilibria are well described by a highly cooperative two-state model.

6.
J Am Chem Soc ; 133(43): 17262-73, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21939246

RESUMO

Linear π-conjugated oligomers have been widely investigated, but the behavior of the corresponding cyclic oligomers is poorly understood, despite the recent synthesis of π-conjugated macrocycles such as [n]cycloparaphenylenes and cyclo[n]thiophenes. Here we present an efficient template-directed synthesis of a π-conjugated butadiyne-linked cyclic porphyrin hexamer directly from the monomer. Small-angle X-ray scattering data show that this nanoring is shape-persistent in solution, even without its template, whereas the linear porphyrin hexamer is relatively flexible. The crystal structure of the nanoring-template complex shows that most of the strain is localized in the acetylenes; the porphyrin units are slightly curved, but the zinc coordination sphere is undistorted. The electrochemistry, absorption, and fluorescence spectra indicate that the HOMO-LUMO gap of the nanoring is less than that of the linear hexamer and less than that of the corresponding polymer. The nanoring exhibits six one-electron reductions and six one-electron oxidations, most of which are well resolved. Ultrafast fluorescence anisotropy measurements show that absorption of light generates an excited state that is delocalized over the whole π-system within a time of less than 0.5 ps. The fluorescence spectrum is amazingly structured and red-shifted. A similar, but less dramatic, red-shift has been reported in the fluorescence spectra of cycloparaphenylenes and was attributed to a high exciton binding energy; however the exciton binding energy of the porphyrin nanoring is similar to those of linear oligomers. Quantum-chemical excited state calculations show that the fluorescence spectrum of the nanoring can be fully explained in terms of vibronic Herzberg-Teller (HT) intensity borrowing.


Assuntos
Nanoestruturas/química , Porfirinas/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Porfirinas/síntese química
7.
J Am Chem Soc ; 131(24): 8446-54, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19480427

RESUMO

A series of highly efficient, modular zwitterion-mediated transformations have been developed which enable diverse functionalization of carbon nanotubes (CNTs, both single-walled and multi-walled) and fullerenes. Three functionalization strategies are demonstrated. (1) Trapping the charged zwitterion intermediate with added nucleophiles allows a variety of functional groups to be installed on the fullerenes and carbon nanotubes in a one-pot reaction. (2) Varying the electrophile from dimethyl acetylenedicarboxylate to other disubstituted esters provides CNTs functionalized with chloroethyl, allyl, and propargyl groups, which can further undergo S(N)2 substitution, thiol addition, or 1,3-dipolar cycloaddition reactions. (3) Postfunctionalization transformations on the cyclopentenones (e.g., demethylation and saponification) of the CNTs lead to demethylated or hydrolyzed products, with high solubility in water (1.2 mg/mL for MWCNTs). CNT aqueous dispersions of the latter derivatives are stable for months and have been successfully utilized in preparation of CNT-poly(ethylene oxide) nanocomposite via electrospinning. Large-scale MWCNT (10 g) functionalization has also been demonstrated to show the scalability of the zwitterion reaction. In total we present a detailed account of diverse CNT functionalization under mild conditions (60 degrees C, no strong acids/bases, or high pressure) and with high efficiency (1 functional group per 10 carbon atoms for SWCNTs), which expand the utility of these materials.

11.
Chem Sci ; 6(1): 181-189, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553466

RESUMO

Rings of chlorophyll molecules harvest sunlight remarkably efficiently during photosynthesis in purple bacteria. The key to their efficiency lies in their highly delocalized excited states that allow for ultrafast energy migration. Here we show that a family of synthetic nanorings mimic the ultrafast energy transfer and delocalization observed in nature. π-Conjugated nanorings with diameters of up to 10 nm, consisting of up to 24 porphyrin units, are found to exhibit excitation delocalization within the first 200 fs of light absorption. Transitions from the first singlet excited state of the circular nanorings are dipole-forbidden as a result of symmetry constraints, but these selection rules can be lifted through static and dynamic distortions of the rings. The increase in the radiative emission rate in the larger nanorings correlates with an increase in static disorder expected from Monte Carlo simulations. For highly symmetric rings, the radiative rate is found to increase with increasing temperature. Although this type of thermally activated superradiance has been theoretically predicted in circular chromophore arrays, it has not previously been observed in any natural or synthetic systems. As expected, the activation energy for emission increases when a nanoring is fixed in a circular conformation by coordination to a radial template. These nanorings offer extended chromophores with high excitation delocalization that is remarkably stable against thermally induced disorder. Such findings open new opportunities for exploring coherence effects in nanometer molecular rings and for implementing these biomimetic light-harvesters in man-made devices.

12.
ACS Appl Mater Interfaces ; 6(14): 10908-16, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24524220

RESUMO

The Li-S system offers a tantalizing battery for electric vehicles and renewable energy storage due to its high theoretical capacity of 1675 mAh g(-1) and its employment of abundant and available materials. One major challenge in this system stems from the formation of soluble polysulfides during the reduction of S8, the active cathode material, during discharge. The ability to deploy this system hinges on the ability to control the behavior of these polysulfides by containing them in the cathode and allowing for further redox. Here, we exploit the high surface areas and good electrical conductivity of mesoporous carbons (MC) to achieve high sulfur utilization while functionalizing the MC with sulfur (S-MC) in order to modify the surface chemistry and attract polysulfides to the carbon material. S-MC materials show enhanced capacity and cyclability trending as a function of sulfur functionality, specifically a 50% enhancement in discharge capacity is observed at high cycles (60-100 cycles). Impedance spectroscopy suggests that the S-MC materials exhibit a lower charge-transfer resistance compared with MC materials which allows for more efficient electrochemistry with species in solution at the cathode. Isothermal titration calorimetry shows that the change in surface chemistry from unfunctionalized to S-functionalized carbons results in an increased affinity of the polysulfide intermediates for the S-MC materials, which is the likely cause for enhanced cyclability.

13.
Macromolecules ; 45(9): 3722-3731, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23226879

RESUMO

Reactivity ratios were evaluated for anionic ring-opening copolymerizations of ethylene oxide (EO) with either allyl glycidyl ether (AGE) or ethylene glycol vinyl glycidyl ether (EGVGE) using a benzyl alkoxide initiator. The chemical shift for the benzylic protons of the initiator, as measured by (1)H NMR spectroscopy, were observed to be sensitive to the sequence of the first two monomers added to the initiator during polymer growth. Using a simple kinetic model for initiation and the first propagation step, reactivity ratios for the copolymerization of AGE and EGVGE with EO could be determined by analysis of the (1)H NMR spectroscopy for the resulting copolymer. For the copolymerization between EO and AGE, the reactivity ratios were determined to be r(AGE) = 1.31 ± 0.26 and r(EO) = 0.54 ± 0.03, while for EO and EGVGE, the reactivity ratios were r(EGVGE) = 3.50 ± 0.90 and r(EO) = 0.32 ± 0.10. These ratios were consistent with the compositional drift observed in the copolymerization between EO and EGVGE, with EGVGE being consumed early in the copolymerization. These experimental results, combined with density functional calculations, allowed a mechanism for oxyanionic ring-opening polymerization that begins with coordination of the Lewis-basic epoxide to the cation to be proposed. The calculated transition-state energies agree qualitatively with the observed relative rates for polymerization.

14.
ACS Nano ; 5(3): 2307-15, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21355592

RESUMO

We report on the noncovalent binding of conjugated porphyrin oligomers to small diameter single-walled carbon nanotubes (SWNTs) and highlight two remarkable observations. First, the binding of the oligomers to SWNTs is so strong that it induces mechanical strain on the nanotubes in solution. The magnitudes of the strains are comparable to those found in solid-state studies. Comparable strains are not observed in any other SWNT-supramolecular complexes. Second, large decreases in polymer band gap with increasing length of the oligomer lead to the formation of a type-II heterojunction between long chain oligomers and small-diameter nanotubes. This is demonstrated by the observation of enhanced red-shifts for the nanotube interband transitions. These complexes offer considerable promise for photovoltaic devices.


Assuntos
Nanotubos de Carbono/química , Porfirinas/química , Módulo de Elasticidade , Campos Eletromagnéticos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Nanotubos de Carbono/efeitos da radiação , Tamanho da Partícula , Porfirinas/efeitos da radiação , Ligação Proteica/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA