Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Environ Health Res ; 33(6): 552-562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35187985

RESUMO

Fine particulate matter (PM2.5) is linked with a wide spectrum of human health effects and has the highest contribution to total air pollution mortality. This study aims to quantify health benefits of reducing PM2.5 concentration to World Health Organization standard (annual mean = 10 µg m-3) for various health endpoints during 2011-2019 period using AirQ+ and BenMAP-CE software packages. Intraurban assessment in Vellore city, India was done by estimating health benefits at ward level. Both software packages estimated annual average all-cause, ischemic heart disease, stroke, and chronic obstructive pulmonary disease health benefits in the range of 919-945, 175-234, 70-152, and 99-175 cases at city level and 15-16, 3-4, 1-3, and 2-3 cases at ward level, respectively. Sensitivity analysis showed that relative risk had a large influence on health benefit estimates. Present study results will play a crucial role in the future air quality and public health policies of Vellore city.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Material Particulado/análise , Poluição do Ar/análise , Cidades
2.
Environ Geochem Health ; 45(5): 2031-2050, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35771398

RESUMO

Present study aims to assess the mass, composition, and sources of PM10 and PM2.5 (particulate matter having aerodynamic diameter less than or equal to 10 and 2.5 µm aerodynamic diameter, respectively) in Vellore city. Seasonal samples collected in traffic and residential sites were analyzed for ions, elements, organic carbon (OC), and elemental carbon (EC). Source apportionment of PM10 and PM2.5 is carried out using Chemical Mass Balance, Unmix, Positive Matrix Factorization and Principal Component Analysis receptor models. Results showed that traffic site had higher annual concentration (PM2.5 = 62 ± 32 and PM10 = 112 ± 23 µg m-3) when compared to residential site (PM2.5 = 54 ± 22 and PM10 = 98 ± 20 µg m-3). Al, Ca, Fe, K, and Mg known to have crustal origin dominated the element composition irrespective of PM size and sampling site. Among ions, SO42- accounted highest in both sites with an average of 70 and 60% to PM2.5 and PM10 ionic mass. Elemental carbon contribution to PM mass was found highest in traffic site (PM2.5 = 17 to 23% and PM10 = 8 to 10%) than residential site (PM2.5 = 9 to 17% and PM10 = 4 to 8%). Elements, ions, OC, and EC accounted 12, 28, 34, and 16% of PM2.5 mass and 12, 21, 20, and 8% of PM10 mass, respectively. Different sources identified by the receptor models are resuspended road dust, crustal material, secondary aerosol, traffic, non-exhaust vehicular emissions, secondary nitrate, construction, cooking, and biomass burning. Since Vellore is aspiring to be a smart city, this study can help the policymakers in effectively curbing PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Carbono/análise , Estações do Ano , Tamanho da Partícula
3.
Int J Environ Health Res ; 31(3): 258-270, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31392891

RESUMO

Background: Particulate matter (PM) is one among the crucial air pollutants and has the potential to cause a wide range of health effects. Indian cities ranked top places in the World Health Organization list of most polluted cities by PM. Objectives: Present study aims to assess the trends, short- and long-term health effects of PM in major Indian cities. Methods: PM-induced hospital admissions and mortality are quantified using AirQ+ software. Results: Annual PM concentration in most of the cities is higher than the National Ambient Air Quality Standards of India. Trend analysis showed peak PM concentration during post-monsoon and winter seasons. The respiratory and cardiovascular hospital admissions in the male (female) population are estimated to be 31,307 (28,009) and 5460 (4882) cases, respectively. PM2.5 has accounted for a total of 1,27,014 deaths in 2017. Conclusion: Cities with high PM concentration and exposed population are more susceptible to mortality and hospital admissions.


Assuntos
Poluentes Atmosféricos/análise , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/análise , Hospitalização/estatística & dados numéricos , Material Particulado/efeitos adversos , Cidades , Feminino , Humanos , Índia/epidemiologia , Masculino , Estações do Ano
4.
Environ Geochem Health ; 42(9): 2819-2840, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32026171

RESUMO

Globally, road dust is a major source of inhalable particulate matter in any urban environment. This research seeks to assess the elemental composition of road dust at Vellore city, India, and to evaluate its health risks. For this, dust samples are collected from 18 locations in the study region. The collected samples are digested and analysed for about 25 elements using inductively coupled plasma-optical emission spectroscopy, of which 19 elements have concentration greater than the detection limit of the instrument (Al, Ba, Ca, Mg, Sr, Co, Cr, Cu, Fe, Ga, Zn, In, K, Li, Mn, Na, Ni, Pb and Rb). The highest mean concentration is noted for Fe (22,638.23 mg/kg) followed by Ca (13,439.47 mg/kg), Al (8445.89 mg/kg) and Mg (3381.20 mg/kg). Enrichment factor (EF) and contamination factor (CF) are calculated for 10 trace elements: Cu, Co, Cr, Ga, Mn, Ni, Pb, Rb, Sr and Zn. Elements Ga and Zn show the highest EF and CF. Source identification recognized that crustal material and traffic as the major sources of potentially toxic elements (PTEs). Further, the health risk assessment is performed for nine PTEs and identifies that Fe, Pb, Cr and Co are elements with the highest health index. Health index of these elements suggests a possible health risk. Ingestion is the major pathway, and children are found to be at a higher risk compared to adults.


Assuntos
Poeira/análise , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Adulto , Criança , Cidades , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Índia , Metais/análise , Metais/toxicidade , Material Particulado/toxicidade , Medição de Risco , Oligoelementos/análise
5.
Ecotoxicol Environ Saf ; 168: 241-248, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30388542

RESUMO

Particulate matter (PM) is crucial among six criteria air pollutants, and it is frequently associated with human morbidity and mortality. According to the aerodynamic diameter, PM is classified as coarse (PM10) and fine (PM2.5). PM with these smaller sizes can easily enter and get deposited in the human airways. This deposited PM fraction commences the development of respiratory diseases such as asthma, chronic obstructive pulmonary disease, and even cancer. Thus, the quantification of PM deposition and its clearance in the human airway are essential for evaluating health risks. This study aims to investigate the size-segregated PM (PM10, PM2.5, and PM1) deposition in human lungs. Size-segregated PM is collected using the Grimm portable environmental dust monitor during winter season near an arterial road located in Chennai city of Tamil Nadu state, India. Multiple-Path Particle Dosimetry (MPPD) Model version 3.04 is utilized for quantifying PM deposition. In MPPD, airway structures of infants (3 and 28 months), children (3, 8, 9 and 14 years) and adults (18 and 21 years) are considered for the study. The values of PM concentration, body orientation, breathing scenario, tidal volume, pause fraction, inspiration fraction, and breathing frequency are specified in the MPPD for quantifying PM depositions. Results showed that 8-year children and 28 months infant groups are recorded with maximum and minimum size-segregated PM deposition respectively. The coarse particles (PM10) are primarily deposited in the head (55-95%) and tracheobronchial (3-44%) regions whereas fine particles (PM2.5 and PM1) depositions are observed maximum in the head (36-63%) and pulmonary (28.2-52.7%) regions. Except for the adult age group, PM2.5 has the maximum deposition percentage in tracheobronchial and pulmonary regions. In the case of lobar depositions, lower lobes receive maximum deposition (66.4%) than the upper (27.2%) and middle lobes (6.4%). PM2.5 dominated the deposition in all five lobes of infant, children, and adults. The clearance rate of deposited PM is high in the tracheobronchial region whereas it is low in the pulmonary region. This study also concludes that PM2.5 is the important size fraction in lung deposition. Further, the study results can be used for human health risk assessments such as oxidative potential and toxicity of deposited PM.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Material Particulado/análise , Adolescente , Criança , Pré-Escolar , Cidades , Humanos , Índia , Lactente , Pulmão/efeitos dos fármacos , Tamanho da Partícula , Respiração , Estações do Ano , Adulto Jovem
6.
Sci Total Environ ; 763: 142999, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127123

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is one of the leading risk factors in India. The elevated levels of PM2.5 exposure concentration in India are related to higher premature mortality. However, health benefits or avoidable premature mortality by reducing PM2.5 concentration is uncertain. OBJECTIVES: Here we simulated the health benefits by assuming the achievement of 1) National Ambient Air Quality Standards of India (PM2.5 annual average = 40 µg m-3), 2) National Clean Air Programme policy (30% reduction) and 3) World Health Organization standard (10 µg m-3). METHODOLOGY: Using Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE), the health benefits are estimated at national, state and district levels for various health endpoints viz., all-cause, ischaemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer and stroke. PM2.5 data, concentration-response coefficient, population, and baseline incidence rate are specified as input data in BenMAP-CE. RESULTS: At the national level, all-cause health benefits in three simulations range from 0.79 to 2.1 million cases during 2019. Similarly, IHD, COPD, lung cancer, and stroke related health benefits are in the range of 0.28-0.68, 0.17-0.39, 0.01-0.03, and 0.14-0.34 million cases, respectively. State-level estimates showed that Uttar Pradesh, Bihar, and West Bengal are having maximum health benefits whereas north-eastern states are found with lowest estimates. Districts such as Allahabad, Lucknow, Muzaffarpur, Patna, and Sultanpur are estimated to have highest health benefits. States and districts with higher PM2.5 concentration and exposed population are found with maximum health benefits. Among the three simulations, achievement of the World Health Organization standard resulted in highest estimates. Further, the limitations and sensitivity of input parameters used in this study are discussed in detail. CONCLUSION: Study results highlighted the need for state and district-specific air quality management measures to increase PM2.5 related health benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Índia , Material Particulado/análise , Padrões de Referência
7.
Chemosphere ; 88(1): 120-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22464859

RESUMO

The 24-h average coarse (PM(10)) and fine (PM(2.5)) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM(10) and PM(2.5) concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM(10) concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM(2.5) concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM(10) and PM(2.5) masses showed a high concentration in winter followed by monsoon and summer seasons. The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM(10) and PM(2.5) concentrations at the study area. Results indicated that marine aerosol (40.4% in PM(10) and 21.5% in PM(2.5)) and secondary PM (22.9% in PM(10) and 42.1% in PM(2.5)) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM(10) and 6% in PM(2.5)), biomass burning (0.7% in PM(10) and 14% in PM(2.5)), tire and brake wear (4.1% in PM(10) and 5.4% in PM(2.5)), soil (3.4% in PM(10) and 4.3% in PM(2.5)) and other sources (12.7% in PM(10) and 6.8% in PM(2.5)).


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Material Particulado/química , Biomassa , Cidades , Tamanho da Partícula , Estações do Ano , Solo/química , Emissões de Veículos
8.
Sci Total Environ ; 433: 8-19, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22766423

RESUMO

The 24-h average ambient particulate matter (PM(10) and PM(2.5)) concentrations are sampled concurrently during November 2008-April 2009 at a busy roadside in Chennai City, India. The elemental (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, Te, Tl, V and Zn) and ionic (Na(+), NH(4)(+), K(+), Ca(2+), Mg(2+), F(-), Cl(-), NO(2)(-), NO(3)(-) and SO(4)(2-)) composition of PM(10) and PM(2.5) are determined using an inductively coupled plasma-optical emission spectrometer (ICP-OES) and an ion chromatograph (IC), respectively. The emission inventory at the study area is also carried out to identify the likely PM emission sources. The U.S. EPA's-CMB (chemical mass balance) version 8.2 is applied to identify the source contribution of ambient PM(10) and PM(2.5) concentrations at the study area. Results indicated that diesel exhausts (43-52% in PM(10) and 44-65% in PM(2.5)) and gasoline exhausts (6-16% in PM(10) and 3-8% in PM(2.5)) are found to be the major source contributors at the study site followed by the paved road dusts (PM(10)=PM(2.5)=0.-2.3%), brake lining dusts (0.1% in PM(10) and 0.2% in PM(2.5)), brake pad wear dusts (0.1% in PM(10) and 0.01% in PM(2.5)), marine aerosols (PM(10)=PM(2.5)=0.1%) and cooking (~0.8% in PM(10) and ~1.5% in PM(2.5)).

9.
Sci Total Environ ; 409(17): 3144-57, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632094

RESUMO

In this paper, the chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic in Chennai city during monsoon, winter and summer seasons were analysed. The 24-h averages of PM10 and PM2.5 mass concentrations, showed higher concentrations during the winter season (PM10=98 µg/m³; PM2.5=74 µg/m³) followed by the monsoon (PM10=87 µg/m³; PM2.5=56 µg/m³) and summer (PM10=77 µg/m³; PM2.5=67 µg/m³) seasons. The assessment of 24-h average PM10 and PM2.5 concentrations was indicated as violation of the world health organization (WHO standard for PM10=50 µg/m³ and PM2.5=25 µg/m³) and Indian national ambient air quality standards (NAAQS for PM10=100 µg/m³ and PM2.5=60 µg/m³). The chemicals characterization of PM10 and PM2.5 samples (22 samples) for each season were made for water soluble ions using Ion Chromatography (IC) and trace metals by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) instrument. Results showed the dominance of crustal elements (Ca, Mg, Al, Fe and K), followed by marine aerosols (Na and K) and trace elements (Zn, Ba, Be, Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Sr and Te) emitted from road traffic in both PM10 and PM2.5 mass. The ionic species concentration in PM10 and PM2.5 mass consists of 47-65% of anions and 35-53% of cations with dominance of SO4²â» ions. Comparison of the metallic and ionic species in PM10 and PM2.5 mass indicated the contributions from sea and crustal soil emissions to the coarse particles and traffic emissions to fine particles.


Assuntos
Poluentes Atmosféricos/química , Automóveis/estatística & dados numéricos , Material Particulado/química , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , China , Cidades , Monitoramento Ambiental , Metais/análise , Metais/química , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA