Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(44): E10505-E10514, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309962

RESUMO

Human BCL-2-associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Piperazinas/farmacologia , Serina/química , Proteína de Morte Celular Associada a bcl/antagonistas & inibidores , Antineoplásicos/química , Apoptose , Benzamidas/química , Proliferação de Células , Bases de Dados Factuais , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Humanos , Células MCF-7 , Fosforilação , Piperazinas/química , Interferência de RNA , Bibliotecas de Moléculas Pequenas , Ressonância de Plasmônio de Superfície
2.
PLoS One ; 9(9): e106364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184206

RESUMO

The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management.


Assuntos
Apigenina/administração & dosagem , Hemorragia/tratamento farmacológico , Metaloproteases/antagonistas & inibidores , Mordeduras de Serpentes/tratamento farmacológico , Animais , Apigenina/síntese química , Apigenina/química , Venenos de Crotalídeos/química , Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Hemorragia/patologia , Metaloendopeptidases/química , Metaloproteases/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Mordeduras de Serpentes/patologia , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química , Venenos de Serpentes/enzimologia , Viperidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA