RESUMO
Streptomyces is a diverse genus, well known for producing a wide array of metabolites that have significant industrial utilization. The present study investigates the genetic and functional diversity of Streptomyces spp. isolated from the Pachmarhi Biosphere Reserve (PBR), India, an unexplored site. The 16S rRNA gene sequencing and analysis revealed 96 isolates belonging to 40 different species indicating a substantial phylogenetic diversity. The strains were clustered into two groups: a major cluster with 94 strains and a small cluster with two strains. BOX- PCR analyses revealed an incredible genetic diversity existing among the strains of Streptomyces spp. in PBR. The analyses revealed the intra-species diversity and inter-species closeness within the genus Streptomyces in the study area. Qualitative screening for enzyme production has shown that 53, 42, 41, 11, and 54 strains tested positive for CMCase, xylanase, amylase, pectinase, and ß-glucosidase, respectively. Additionally, 54 strains tested positive for PHB production. The strains were assayed quantitatively for the production of CMCase, xylanase, amylase, and pectinase. Streptomyces sp. MP9-2, Streptomyces sp. MP10-11, Streptomyces sp. MP10-18, and Streptomyces sp. MP10-6 recorded maximum CMCase (0.604 U/mL), xylanase (0.553 U/mL), amylase (1.714 U/mL), and pectinase (13.15 U/mL) activities, respectively. Furthermore, several strains demonstrated plant growth-promoting traits, viz. zinc and phosphate solubilization and production of ammonia, HCN (hydrogen cyanide), and IAA (Indole acetic acid), and nitrogen fixation. Fifty strains showed antifungal activity against Fusarium oxysporum f. sp. lycopersici with inhibitions ranging from 7.5 to 47.5%. Current findings underscore the ecological and biotechnological significance of Streptomyces spp. in the unexplored habitat of PBR.
Assuntos
Variação Genética , Filogenia , RNA Ribossômico 16S , Streptomyces , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/classificação , Índia , RNA Ribossômico 16S/genética , Microbiologia do Solo , DNA Bacteriano/genéticaRESUMO
Curvularia leaf spot affects maize plants worldwide and is commonly caused by Curvularia lunata, C. geniculata, and C. pallescens (Manzar et al. 2022; Manzar et al. 2021; Choudhary et al. 2011). In February 2017, leaf spot symptoms were observed in a Deogaon, (25.74 N, 82.99 E) in Uttar Pradesh, India, with disease incidence of less than 10% of the plants in maize fields. On the leaves and sheaths, variously shaped yellow spots were developed. The spots were 2.5 mm in diameter and frequently grew larger, reaching a diameter of 1 cm. They were encircled by a chlorotic halo with dark borders. The symptomatic tissue showing leaf spots of 10 plants was taken and cut into pieces (4 mm2) then surface sterilized with 1% sodium hypochlorite for 1 min, and rinsed three times with distilled water. The cut leaf tissue was placed on the Petri plate containing potato dextrose agar medium amended with streptomycin sulfate (125 ppm). Then incubated at 25±2°C with a 12-h light and dark period, after 5 days of incubation, five pure cultures were obtained using the hyphal tip technique. The pure culture was incubated at 26±2°C for 10 days. The upper surface of the colony was dark grayish black with fluffy mycelia, and the reverse colony was dark brown. The conidia have three septa, are light brown to dark brown in color, straight to curved, ellipsoidal to fusiform, and have two bigger, darker central cells than terminal cells. On average, conidia are between 27.22 to 31.21 mm long and 10.61 to 12.62 mm wide (n=30). The morphological description is similar to the Curvularia verruculosa morphological traits described by Tandon & Bilgrami (Ellis 1966). Molecular identification was done in addition to supporting morphological identification. The nucleopore GDNA Fungus Kit (Genetix Brand, India) was used to extract the genomic DNA of the E40 isolate. The ITS rDNA region (White et al. 1990) and the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene (Berbee et al. 1999) were amplified through PCR(Manzar et al., 2022).The amplicons were bidirectional sequenced through the Sanger sequencing method. The similarity percentage of E40 isolate matched 100% with MH859788 (CBS444.70 ) of Curvularia verruculosa strain for ITS, and 100% with LT715824 (CBS150.63) of Curvularia verruculosa strain for gpd after Blastn analysis. The gene sequences were deposited to GenBank and accession no. OR262893 for ITS, and LC773704 for gpd were assigned. As a result, C. verruculosa was determined to be the presumed pathogen by both morphology and molecular characteristics. The pathogenicity of E40 isolate was performed twice by spraying (106 conidia/ml in sterile water) onto the leaves of 25 days old maize plant cv. Kanchan (n = 10). Uninoculated healthy maize plants (n=5) were sprayed only with autoclaved water. All pots are kept in a glass house at 25°C±2°C with 90% relative humidity. After 15 days of pathogen inoculation the foliar spots with chlorotic halo, enlarger upto 1cm, and from these spots the identical fungus was reisolated. The reisolated fungus showed similar morphological characteristics to C. verruculosa. Control plants showed no symptoms. C. verruculosa has been previously reported as a causative agent of leaf spot disease in Common beans (Wei et al., 2022), Cotton (Shirsath et al., 2018). To our knowledge, this is the first report of leaf blight caused by C. verruculosa on maize in India.
RESUMO
Quinoa is a potential crop to address the situation as it offers a plethora of benefits as it is nutritionally rich and can adapt to extreme climatic and salt conditions. Quinoa germ consists of almost 25-30% of whole grain. Quinoa germ obtained using roller milling has remarkable nutritional properties with high protein, fat and mineral content. Presence higher fat content limits shelf-life of quinoa germ. The objective of the present investigation is to study the effect of different treatment on stabilization of quinoa germ and its storge study. Quinoa germ was subjected to microwave and infrared treatment for shelf-life extension. Colour properties of the germ has not changed drastically by both treatments. Sorption behavior of quinoa germ stored at different RH was studied and results showed typical sigmoid curve for all samples. Sorption studies revealed that treated quinoa germ were stable at 64% RH. The storage study was carried out at accelerated conditions using PET/PE packaging material. Based on the results of the study, it can be inferred that the quinoa germ can be kept up to three months at accelerated conditions. Study demonstrated that microwave treatments of quinoa germ showed highest shelf life of three months at accelerated conditions.
RESUMO
Chitinases are a group of enzymes that catalyze chitin hydrolysis and are present in all domains of life. Chitinases belong to different glycosyl hydrolase families with great diversity in their sequences. Microorganisms such as bacteria and fungi produce chitinases for nutrition, and energy, and to parasitize the chitinous hosts. But chitinases from bacteria are of special interest due to their ubiquitous nature and ability to perform under extreme conditions. Chitinases produced by bacteria have been explored for their use in agriculture and industry. In agriculture, their main role is to control chitin-containing insect pests, fungal pathogens, and nematodes. In the seafood industry, they found their role in the management of processing wastes which are mainly chitinous substances. Chitinases are also used to synthesize low molecular weight chitooligomers which are proven bioactive compounds with activities such as anti-tumour, antimicrobial, and immunity modulation. Considering their importance in ecology and biotechnological applications, several bacterial chitinases have been studied in the last two decades. Despite their potential, bacterial chitinases have a few limitations such as low production and lack of secretion systems which make the wild-type enzymes unfit for their applications in industries and other allied sectors. This review is an attempt to collate significant works in bacterial chitinases and their application in various industries and the employment of various tools and techniques for improvement to meet industrial requirements.
Assuntos
Bactérias , Quitinases , Bactérias/enzimologia , Biotecnologia/métodos , Quitina , Quitinases/biossíntese , HidróliseRESUMO
The sheath blight disease of rice caused by Rhizoctonia solani is widely prevalent and one of the most destructive diseases, affecting rice cultivation and loss worldwide. In the present study, a set of twenty Bacillus isolates from saline soil of Uttar Pradesh were tested for their biocontrol activity against R. solani with the aim to obtain a potential strain for the control of sheath blight disease toward ecofriendly and sustainable agriculture. The results of dual-culture assay and scanning electron microscopic studies showed that the strain RH5 exhibited significant antagonistic activity (84.41%) against the fungal pathogen R. solani. On the basis of 16S rDNA sequencing analysis, the potential biocontrol strain RH5 was identified as Bacillus subtilis. Furthermore, the strain RH5 was characterized by different plant growth-promoting (PGP) activities and induction of defense-related enzymes in rice plants against R. solani. The strain RH5 posses various PGP attributes (indole acetic acid, siderophore, hydrogen cyanide production and phosphate, Zn, K solubility), hydrolytic enzymatic (chitinase, protease, cellulase, xylanase) activity, and presence of antimicrobial peptide biosynthetic genes (bacylisin, surfactin, and fengycin), which support the strain for efficient colonization of hyphae and its inhibition. Finally, the results of the greenhouse study confirmed that strain RH5 significantly increased plant growth and triggered resistance in rice plants through the production of defense-related antioxidant enzymes.
Assuntos
Bacillus subtilis/fisiologia , Agentes de Controle Biológico , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia , Antibiose , Peptídeos Catiônicos Antimicrobianos/genética , Bacillus subtilis/classificação , Bacillus subtilis/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Genes Bacterianos , Oryza/crescimento & desenvolvimento , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Rhizoctonia/crescimento & desenvolvimento , Microbiologia do SoloRESUMO
Salinity stress is one of the key constraints for sustainable crop production. It has gained immense importance in the backdrop of climate change induced imbalanced terrestrial water budgets. The traditional agronomic approaches and breeding salt-tolerant genotypes have often proved insufficient to alleviate salinity stress. Newer approaches like the use of bacterial endophytes associated with agricultural crops have occupied center place recently, owing to their advantageous role in improving crop growth, health and yield. Research evidences have revealed that bacterial endophytes can promote plant growth by accelerating availability of mineral nutrients, helping in production of phytohormones, siderophores, and enzymes, and also by activating systemic resistance against insect pest and pathogens in plants. These research developments have opened an innovative boulevard in agriculture for capitalizing bacterial endophytes, single species or consortium, to enhance plant salt tolerance capabilities, and ultimately lead to translational refinement of crop-production business under salty environments. This article reviews the latest research progress on the identification and functional characterization of salt tolerant endophytic bacteria and illustrates various mechanisms triggered by them for plant growth promotion under saline environment.
Assuntos
Bactérias/metabolismo , Endófitos/fisiologia , Desenvolvimento Vegetal/fisiologia , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/microbiologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Microbiota , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Salinidade , Sideróforos/metabolismo , Microbiologia do SoloRESUMO
Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.
Assuntos
Agricultura/métodos , Mudança Climática , Produtos Agrícolas , Trichoderma/fisiologia , Adaptação Fisiológica , Biotecnologia/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Fertilizantes , Alimentos , Nitrogênio , Desenvolvimento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo/química , Microbiologia do Solo , Estresse Fisiológico , Trichoderma/classificação , Trichoderma/genética , Trichoderma/patogenicidadeRESUMO
Penicilliopsis clavariiformis AP, a rare salt tolerant fungus reported for the first time from India was identified through polyphasic taxonomy. Scanning electron microscopy showed that the fungus has unique features such as biverticillate penicilli bearing masses of oval to ellipsoidal conidia. The fungus has been characterized for salt tolerance and to understand the relevance of central carbon metabolism in salt stress adaptation. It showed optimal growth at 24 °C and able to tolerate up to 10% (w/v) NaCl. To understand the mechanism of adaptation to high salinity, activities of the key enzymes regulating glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle were investigated under normal (0% NaCl) and saline stress environment (10% NaCl). The results revealed a re-routing of carbon metabolism away from glycolysis to the pentose phosphate pathway (PPP), served as a cellular stress-resistance mechanism in fungi under saline environment. The detection and significant expression of fungus genes (Hsp98, Hsp60, HTB, and RHO) under saline stress suggest that these halotolerance conferring genes from the fungus could have a role in fungus protection and adaptation under saline environment. Overall, the present findings indicate that the rearrangement of the metabolic fluxes distribution and stress related genes play an important role in cell survival and adaptation under saline environment.
Assuntos
Ascomicetos/metabolismo , Avicennia/microbiologia , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Via de Pentose Fosfato/fisiologia , Tolerância ao Sal/genética , Aclimatação , Ascomicetos/isolamento & purificação , Chaperonina 60/genética , Chaperonina 60/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Microscopia Eletrônica de Varredura , Salinidade , Cloreto de Sódio/metabolismo , Estresse FisiológicoRESUMO
In an effort to obtain reliable, alkali-tolerant, and symbiotically efficient rhizobial strains, 54 indigenous rhizobial isolates were obtained from root nodules of chickpea grown in alkaline soil of 5 different agricultural locations in North-West Indo Gangetic Plains (NW-IGP). Of these, 16 most symbiotically effective isolates were selected for polyphasic analysis (pH stress, salt tolerance, and genetic characterization). All the selected isolates were able to tolerate the high alkaline pH. Among them, CPN1, CPN8, and CPN32 grew well at pH 11.0. High pH-induced proteins were explored by SDS-PAGE assay. Identification and genetic characterization of isolates was done by 16S rRNA gene sequencing, RNA polymerase subunit-B (rpoB) and symbiotic genes (nodC and nifH). The study revealed diverse symbiotically efficient alkalotolerant chickpea nodulating rhizobial strains from NW-IGP. This study has thus contributed a valuable genetic pool of isolates that can potentially be used to increase chickpea production in these soil types.
Assuntos
Cicer/microbiologia , Rhizobium/isolamento & purificação , Agricultura , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Concentração de Íons de Hidrogênio , Índia , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Salinidade , Tolerância ao Sal , Microbiologia do Solo , Simbiose/fisiologiaRESUMO
Microsatellites provide an ideal molecular markers system to screen, characterize and evaluate genetic diversity of several fungal species. Currently, there is very limited information on the genetic diversity of antagonistic Trichoderma species as determined using a range of molecular markers. In this study, expressed and whole genome sequences available in public database were used to investigate the occurrence, relative abundance and relative density of SSRs in five different antagonistic Trichoderma species: Trichoderma atroviride, T. harzianum, T. reesei, T. virens and T. asperellum. Fifteen SSRs loci were used to evaluate genetic diversity of twenty isolates of Trichoderma spp. from different geographical regions of India. Results indicated that relative abundance and relative density of SSRs were higher in T. asperellum followed by T. reesei and T. atroviride. Tri-nucleotide repeats (80.2%) were invariably the most abundant in all species. The abundance and relative density of SSRs were not influenced by the genome sizes and GC content. Out of eighteen primer sets, only 15 primer pairs showed successful amplification in all the test species. A total of 24 alleles were detected and five loci were highly informative with polymorphism information content values greater than 0.40, these markers provide useful information on genetic diversity and population genetic structure, which, in turn, can exploit for establishing conservation strategy for antagonistic Trichoderma isolates.
Assuntos
Antibiose/genética , Variação Genética , Repetições de Microssatélites , Trichoderma/genética , Alelos , Análise por Conglomerados , Primers do DNA/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Marcadores Genéticos , Genética Populacional , Tamanho do Genoma , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Trichoderma/classificação , Trichoderma/isolamento & purificaçãoRESUMO
To ascertain the variability in Fusarium udum (Fu) isolates associated with pigeonpea wilt is a difficult task, if based solely on morphological and cultural characters. In this respect, the robustness of five different genetic marker viz., random amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus (ERIC), BOX elements, mating type locus, and microsatellite markers were employed to decipher intra-specific variability in Fu isolates. All techniques yielded intra-specific polymorphism, but different levels of discrimination were obtained. RAPD-PCR was more discriminatory, enabling the detection of thirteen variants among twenty Fu isolates. By microsatellite, ERIC- and BOX-PCR fingerprinting, the isolates were categorized in seven, five, and two clusters, respectively. Cluster analysis of the combined data also showed that the Fu isolates were grouped into ten clusters, sharing 50-100% similarity. The occurrence of both mating types in Fu isolates is reported for the first time in this study. All examined isolates harbored one of the two mating-type idiomorphs, but never both, which suggests a heterothallic mating system of sexual reproduction among them. Information obtained from comparing results of different molecular marker systems should be useful to organize the genetic variability and ideally, will improve disease management practices by identifying sources of inoculum and isolate characteristics.
Assuntos
Cajanus/microbiologia , Fusarium/genética , Fusarium/isolamento & purificação , Genes Fúngicos Tipo Acasalamento , Marcadores Genéticos , Polimorfismo Genético , Análise por Conglomerados , Impressões Digitais de DNA , DNA Fúngico/genética , Variação Genética , Filogenia , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA PolimórficoRESUMO
16S rRNA and nifD-nifK sequences were used to study the molecular phylogeny and evolutionary genetics of Frankia strains isolated from Hippöphae salicifolia D. Don growing at different altitudes (ecologically classified as riverside and hillside isolates) of the Eastern Himalayan region of North Sikkim, India. Genetic information for the small subunit rRNA (16S rRNA) revealed that the riverside Frankia isolates markedly differed from the hillside isolates suggesting that the riverside isolates are genetically compact. Further, for enhanced resolutions, the partial sequence of nifD (3' end), nifK (5' end) and nifD-K IGS region have been investigated. The sequences obtained, failed to separate riverside isolates and hillside isolates, thus suggesting a possible role of genetic transfer events either from hillside to riverside or vice versa. The evolutionary genetic analyses using evogenomic extrapolations of gene sequence data obtained from 16S rRNA and nifD-K provided differing equations with the pace of evolution being more appropriately, intermediate. Values of recombination frequency (R), nucleotide diversity per site (Pi), and DNA divergence estimates supported the existence of an intermixed zone where spatial isolations occurred in sync with the temporal estimates. J. Basic Microbiol. 2015, 54, 1-9.
Assuntos
Evolução Molecular , Frankia/genética , Filogenia , RNA Ribossômico 16S/genética , DNA Intergênico , Frankia/classificação , Frankia/crescimento & desenvolvimento , Genes Bacterianos , Genes de RNAr , Hippophae/microbiologia , Índia , Nitrogenase/genética , Reação em Cadeia da Polimerase , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNARESUMO
The indigenous fungal flora of three oil refinery contaminated sites (Bharuch, Valsad and Vadodara) of India has been documented in the present investigation. A total seventy-five fungal morphotypes were isolated from these sites and out of them, only fifteen isolates were capable of utilizing ethanol (0-8%; v:v) as a sole source of carbon and energy for growth. Ten percent ethanol was completely lethal for the growth of all the isolated fungus. Biochemical characterization of the potent ethanol utilizing fungal isolates was studied based on substrate utilization profiles using BIOLOG phenotype microarray plates. Based on the morphological characters and Internal Transcribed Spacer region of ribosomal DNA, the fungal isolates were identified as Fusarium brachygibbosum, Fusarium equiseti, Fusarium acuminatum, Pencillium citrinum, Alternaria tenuissima, Septogloeum mori, Hypocrea lixii, Aureobasidium sp., Penicillium sp., and Fusarium sp. Intra-species genetic diversity among Fusarium sp. was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. It was found that these fungus use alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes based metabolism pathway to utilize ethanol for their growth and colonization.
Assuntos
Biodiversidade , Etanol/metabolismo , Fungos/isolamento & purificação , Fungos/metabolismo , Óleos , Microbiologia do Solo , Poluentes do Solo , Carbono/metabolismo , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Metabolismo Energético , Fungos/classificação , Fungos/genética , Índia , Dados de Sequência Molecular , Tipagem Molecular , Técnicas de Tipagem Micológica , Filogenia , Análise de Sequência de DNARESUMO
Myconanotechnology is an emerging field, where fungi can be harnessed for the synthesis of nanomaterials or nanostructures with desirable shape and size. Though myconanotechnology is in its infancy, potential applications provide exciting waves of transformation in agriculture and fascinate microbiologists and other researchers to contribute in providing incremental solutions through green chemistry approaches for advancing food security. In this article, we provide a brief overview of the research efforts on the mycogenic synthesis of nanoparticles with particular emphasis on mechanisms and potential applications in agriculture and allied sectors.
Assuntos
Agricultura/métodos , Fungos/metabolismo , Nanoestruturas/microbiologia , Nanotecnologia/métodos , Agricultura/tendências , Nanoestruturas/química , Nanotecnologia/tendênciasRESUMO
Germ is the most significant component of quinoa having good nutritional value. Quinoa germ (QG), with balanced amino acid profile and unsaturated fatty acid, is a unique ingredient for human nutrition. In present study, pasta supplemented with QG was characterized for physical, nutritional, morphological, and textural properties. Dough rheology showed increased farinograph water absorption and decreased dough stability with the addition of QG. Addition of QG up to 30% significantly improved the pasta protein content from 13.55% to 20.55%. The substitution of QG to pasta showed decrease in whiteness index and increase in optimum cooking time, swelling index, cooked weight, and cooking loss. It is reported that 20% QG supplement pasta was found to be acceptable; beyond, this level the pasta quality was inferior. Firmness value of pasta significantly increased up to 20% supplementation of QG from 157 to 178 g. The micrographs of pasta with the addition of QG observed increased protein matrix around the starch granules. The results inferred that the QG can serve as a potential functional ingredient for the development of nutritionally enhanced pasta for food industry. PRACTICAL APPLICATION: Quinoa germ (QG) is concentrated source of nutrient with unique nutrition and alternative source of protein. Pasta is the one the popular and fast-growing food in world and explored for enhancement of its nutritional composition to target a larger population with specific nutrient demand. Hence, pasta becomes important vehicle for the supplementation. Developed QG-enriched high-protein pasta will help industry to produce nutritious products at large scale.
Assuntos
Chenopodium quinoa , Humanos , Chenopodium quinoa/química , Culinária/métodos , Fenômenos Químicos , Valor Nutritivo , Farinha/análiseRESUMO
BACKGROUND: Chickpea is one of the most important leguminous crops and its productivity is significantly affected by salinity stress. The use of ecofriendly, salt-tolerant, plant growth-promoting rhizobacteria (PGPR) as a bioinoculant can be very effective in mitigating salinity stress in crop plants. In the present study, we explored, characterized, and evaluated a potential PGPR isolate for improving chickpea growth under salt stress. METHODS: A potential PGPR was isolated from rhizospheric soils of chickpea plants grown in the salt-affected area of eastern Uttar Pradesh, India. The isolate was screened for salt tolerance and characterized for its metabolic potential and different plant growth-promoting attributes. Further, the potential of the isolate to promote chickpea growth under different salt concentrations was determined by a greenhouse experiment. RESULTS: A rhizobacteria isolate, CM94, which could tolerate a NaCl concentration of up to 8% was selected for this study. Based on the BIOLOG carbon source utilization, isolate CM94 was metabolically versatile and able to produce multiple plant growth-promoting attributes, such as indole acetic acid, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore, hydrogen cyanide (HCN), and ammonia as well as solubilized phosphate. A polyphasic approach involving the analysis of fatty acid methyl ester (FAME) and 16S rRNA gene sequencing confirmed the identity of the isolate as Enterobacter sp. The results of greenhouse experiments revealed that isolate CM94 inoculation significantly enhanced the shoot length, root length, and fresh and dry weight of chickpea plants, under variable salinity stress. In addition, inoculation improved the chlorophyll, proline, sugar, and protein content in the tissues of the plant, while lowering lipid peroxidation. Furthermore, isolate CM94 reduced oxidative stress by enhancing the enzymatic activities of superoxide dismutase, catalase, and peroxidase compared to in the respective uninoculated plants. CONCLUSIONS: Overall, the results suggested that using Enterobacter sp. CM94 could significantly mitigate salinity stress and enhance chickpea growth under saline conditions. Such studies will be helpful in identifying efficient microorganisms to alleviate salinity stress, which in turn will help, to devise ecofriendly microbial technologies.
Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Desenvolvimento Vegetal , Solo , Tolerância ao SalRESUMO
Increased soil salinity poses serious limitations in crop yield and quality; thus, an attempt was made to explore microbial agents to mitigate the ill effects of salinity in rice. The hypothesis was mapping of microbial induction of stress tolerance in rice. Since the rhizosphere and endosphere are two different functional niches directly affected by salinity, it could be very crucial to evaluate them for salinity alleviation. In this experiment, endophytic and rhizospheric microbes were tested for differences in salinity stress alleviation traits in two rice cultivars, CO51 and PB1. Two endophytic bacteria, Bacillus haynesii 2P2 and Bacillus safensis BTL5, were tested with two rhizospheric bacteria, Brevibacterium frigoritolerans W19 and Pseudomonas fluorescens 1001, under elevated salinity (200 mM NaCl) along with Trichoderma viride as an inoculated check. The pot study indicated towards the presence of variable salinity mitigation mechanisms among these strains. Improvement in the photosynthetic machinery was also recorded. These inoculants were evaluated for the induction of antioxidant enzymes viz. CAT, SOD, PO, PPO, APX, and PAL activity along with the effect on proline levels. Modulation of the expression of salt stress responsive genes OsPIP1, MnSOD1, cAPXa, CATa, SERF, and DHN was assessed. Root architecture parameters viz. cumulative length of total root, projection area, average diameter, surface area, root volume, fractal dimension, number of tips, and forks were studied. Confocal scanning laser microscopy indicated accumulation of Na+ in leaves using cell impermeant Sodium Green™, Tetra (Tetramethylammonium) Salt. It was found that each of these parameters were induced differentially by endophytic bacteria, rhizospheric bacteria, and fungus, indicating different paths to complement one ultimate plant function. The biomass accumulation and number of effective tillers were highest in T4 (Bacillus haynesii 2P2) plants in both cultivars and showed the possibility of cultivar specific consortium. These strains and their mechanisms could form the basis for further evaluating microbial strains for climate-resilient agriculture.
RESUMO
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
RESUMO
Accurate and timely disease detection plays a critical role in achieving sustainable crop protection. Globally, rice has been a staple crop for centuries plagued by the diseases that greatly hamper its productivity. Sheath rot, an emerging disease of rice caused by the seed-borne pathogen Sarocladium oryzae, has reportedly caused heavy losses to agricultural produce in recent years. Our study has led to the development and validation of a LAMP assay for early detection of S. oryzae, the causal agent of sheath rot from the live-infected tissues, seeds, weeds, and environmental samples. The assay could detect as low as 1.6 fg/µl of the pathogen in 15 min. The assay was implemented to bio-surveil the presence of this pathogen by testing it on three weed species (Echinochloa colona, Echinochloa crus-galli, and Cyperus teneriffae) growing around the rice fields. The results showed the presence of the pathogen in two of the weed species viz. E. colona and E. crus-galli. The assay was used to test 13 different rice varieties for the presence of S. oryzae in seeds. In total, three of the varieties did not show the presence of S. oryzae in their seeds while the rest were found to harbor the pathogen. The developed assay can effectively be used to detect and screen the presence of S. oryzae in live samples including seeds and field soil.
RESUMO
BACKGROUND: Conjunctivitis is the inflammation of the conjunctiva. Although data on clinical efficacy and safety of various ayurvedic treatments in conjunctivitis is published, systematic review is not done. This systematic review and meta-analysis aims to evaluate the efficacy and safety of ayurvedic treatments in conjunctivitis. METHODS: A literature search of the Cochrane Library (Cochrane central register of controlled trials: issue 6 of 12, June 2018), Pub Med, AYUSH research portal (Govt. of India), DHARA portal, Google scholar and online clinical trials registers was done. Randomized controlled trials (RCTs), quasi-randomized controlled trials (QRCTs), controlled clinical trials (CCTs) and multiple arms clinical trials were identified in which Ayurveda treatments with any dose, type, schedule, drug, dosage form, and advised Pathayapathya (lifestyle changes) were selected. RESULTS: We identified 13 eligible RCTs, five CCTs and two multiple arms clinical trials which includes a total of 816 participants. Meta analysis of data from five trials showed that ayurvedic treatments benefitted more compared with non-ayurveda interventions in symptoms like itching (SMD = -0.98, 95% CI (-1.30,-0.65) p < 0.00001, I2 = 38%), pain (SMD = -0.57, 95% CI (-0.87, -0.29, P = 0.0001, I2 = 0%), ropy discharge (SMD = -1.02, 95% CI(-1.45, -0.59), P < 0.00001, I2 = 0%), conjunctival congestion (SMD = -0.67, 95% CI (-0.91, -0.43), p < 0.00001, I2 = 0%), foreign body sensation (SMD = -0.68, 95% CI(-1.06, -0.29), p = 0.0006, I2 = 46%, Fig. 8) and lid heaviness (SMD = -0.66, 95% CI(- 0.98, -0.33), p < 0.0001, I2 = 0%). CONCLUSIONS: Although some findings confirm the benefit of ayurveda as opposed to non ayurveda for the treatment of conjunctivitis, since the studies have high risk of bias and are of lower quality, the findings could not be generalized. There is a need for high quality studies in ayurveda in this regard. PROSPERO REGISTRATION: CRD42019129436.