Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 257(6): 115, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169910

RESUMO

MAIN CONCLUSION: Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.


Assuntos
Melatonina , Metais Pesados , Poluentes do Solo , Melatonina/farmacologia , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo
2.
Ecotoxicol Environ Saf ; 207: 111252, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916530

RESUMO

Drought is the major abiotic factors that limit crop productivity worldwide. To withstand stress conditions, plants alter numerous mechanisms for adaption and tolerance. Therefore, in the present study, 106 rice varieties were screened for drought tolerance phenotype via exposing different concentrations of polyethylene glycol 6000 (PEG) in the hydroponic nutrient medium at the time interval of 1, 3, and 7 days to evaluate the changes in their root system architecture. Further, based on root phenotype obtained after PEG-induced drought, two contrasting varieties drought-tolerant Heena and -sensitive Kiran were selected to study transcriptional and physiological alterations at the same stress durations. Physiological parameters (photosynthesis rate, stomatal conductance, transpiration), and non-enzymatic antioxidants (carotenoids, anthocyanins, total phenol content) production indicated better performance of Heena than Kiran. Comparatively higher accumulation of carotenoid and anthocyanin content and the increased photosynthetic rate was also observed in Heena. Root morphology (length, numbers of root hairs, seminal roots and adventitious roots) and anatomical data (lignin deposition, xylem area) enable tolerant variety Heena to better maintain membrane integrity and relative water content, which also contribute to comparatively higher biomass accumulation in Heena under drought. In transcriptome profiling, significant drought stress-associated differentially expressed genes (DEGs) were identified in both the varieties. A total of 1033 and 936 uniquely upregulated DEGs were found in Heena and Kiran respectively. The significant modulation of DEGs that were mainly associated with phytohormone signaling, stress-responsive genes (LEA, DREB), transcription factors (TFs) (AP2/ERF, MYB, WRKY, bHLH), and genes involved in photosynthesis and antioxidative mechanisms indicate better adaptive nature of Heena in stress tolerance. Additionally, the QTL-mapping analysis showed a very high number of DEGs associated with drought stress at AQHP069 QTL in Heena in comparison to Kiran which further distinguishes the drought-responsive traits at the chromosomal level in both the contrasting varieties. Overall, results support the higher capability of Heena over Kiran variety to induce numerous genes along with the development of better root architecture to endure drought stress.


Assuntos
Secas , Oryza/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Oryza/metabolismo , Fenótipo , Fotossíntese , Reguladores de Crescimento de Plantas , Fatores de Transcrição/genética , Transcriptoma
3.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480163

RESUMO

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Assuntos
Acetatos/farmacologia , Arsênio/toxicidade , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Acetatos/metabolismo , Arsênio/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Transporte Biológico , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
4.
Metallomics ; 11(2): 375-389, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30516767

RESUMO

Glutathione S-transferases (GSTs) are well-known enzymes due to their role in detoxification of xenobiotic compounds. However, their biochemical action is still not so clear in imparting tolerance to several abiotic stresses in crop plants. In our previous study, we observed that rice tau class OsGSTU30 plays a significant role in the detoxification of Cr(vi). Interestingly, q-RT PCR analysis also revealed higher expression of OsGSTU30 under drought conditions. In this study, we characterize OsGSTU30 in response to drought as well as heavy metal [Cr(vi)] stresses through overexpression in Arabidopsis thaliana. Biochemical and physiological analyses revealed that OsGSTU30 overexpression lines have improved tolerance against both stresses as compared to wild-type plants. Kinetic analysis and molecular docking confirmed that OsGSTU30 enzyme possesses both GST as well as glutathione peroxidase (GPx) like activity. Differentially expressed stress-responsive genes were also identified by transcriptome analysis, involved in different biological pathways during abiotic stresses. These results suggest the signaling functions of OsGSTU30 apart from its catalytic activity during abiotic stress responses and can be further exploited for improving the stress tolerance in crops.


Assuntos
Arabidopsis/genética , Oryza/genética , Western Blotting , Secas , Regulação da Expressão Gênica de Plantas/genética , Glutationa Transferase/genética , Cinética , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS One ; 12(5): e0176399, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459834

RESUMO

Abiotic stresses adversely affect cellular homeostasis, impairing overall growth and development of plants. These initial stress signals activate downstream signalling processes, which, subsequently, activate stress-responsive mechanisms to re-establish homeostasis. Dehydrins (DHNs) play an important role in combating dehydration stress. Rice (Oryza sativa L.), which is a paddy crop, is susceptible to drought stress. As drought survival in rice might be viewed as a trait with strong evolutionary selection pressure, we observed DHNs in the light of domestication during the course of evolution. Overall, 65 DHNs were identified by a genome-wide survey of 11 rice species, and 3 DHNs were found to be highly conserved. The correlation of a conserved pattern of DHNs with domestication and diversification of wild to cultivated rice was validated by synonymous substitution rates, indicating that Oryza rufipogon and Oryza sativa ssp. japonica follow an adaptive evolutionary pattern; whereas Oryza nivara and Oryza sativa ssp. indica demonstrate a conserved evolutionary pattern. A comprehensive analysis of tissue-specific expression of DHN genes in japonica and their expression profiles in normal and PEG (poly ethylene glycol)-induced dehydration stress exhibited a spatiotemporal expression pattern. Their interaction network reflects the cross-talk between gene expression and the physiological processes mediating adaptation to dehydration stress. The results obtained strongly indicated the importance of DHNs, as they are conserved during the course of domestication.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Duplicação Cromossômica , Cromossomos de Plantas , Sequência Conservada , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Bases de Dados Genéticas , Desidratação/genética , Desidratação/metabolismo , Domesticação , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Moleculares , Peptídeo PHI , Raízes de Plantas/metabolismo , Polietilenoglicóis , Conformação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
Metallomics ; 6(8): 1549-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24968244

RESUMO

Extensive use of hexavalent chromium [Cr(VI)] in leather tanning, stainless-steel production, wood preservatives and electroplating industries has resulted in widespread environmental pollution and poses a serious threat to human health. A plant's response to Cr(VI) stress results in growth inhibition and toxicity leading to changes in components of antioxidant systems. In a previous study, we observed that a large number of glutathione S-transferase (GST) genes were up-regulated under Cr(VI) stress in rice. In this study, two rice root-specific Tau class GST genes (OsGSTU30 and OsGSTU41) were introduced into yeast (Schizosaccharomyces pombe). Transformed yeast cells overexpressing OsGSTU30 and OsGSTU41 had normal growth, but had much higher levels of GST activities and showed enhanced resistance to Cr(VI) as compared to control cells (transformed with empty vector). Also, a higher accumulation of chromium was found in the transformed yeast cells as compared to the control cells. Manipulation of glutathione biosynthesis by exogenous application of buthionine sulfoximine abolishes the protective effect of OsGSTs against Cr(VI) stress. These results suggest that Tau class OsGSTs play a significant role in detoxification of Cr(VI), probably by chelating and sequestrating glutathione-Cr(VI) complexes into vacuoles.


Assuntos
Cromo/farmacologia , Glutationa Transferase/metabolismo , Oryza/enzimologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Glutationa Transferase/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA