Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Chem ; 93(48): 15850-15860, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797972

RESUMO

Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2-4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40-90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.


Assuntos
Aprendizado Profundo , Análise Espectral Raman , Imagem Molecular , Redes Neurais de Computação , Razão Sinal-Ruído
2.
Macromol Biosci ; 24(3): e2300345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37777870

RESUMO

Drug delivery into articular cartilage poses many challenges due in part to its lack of vasculature. While intra-articular injections are effective for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As such, there is a need to develop effective drug delivery strategies to improve the residence times of bioactive molecules in the joint and elicit a sustained therapeutic effect. In this study, calcium- and strontium-polyphosphate particles are synthesized and characterized as potential drug carriers into articular cartilage. Physicochemical characterization reveals that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirms cellular uptake of the particles and demonstrates both size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles results in a reduction in cell proliferation and metabolic activity, confirming biological effects. Finally, incubation with cartilage tissue explants suggests successful uptake, despite the particles exhibiting a negative surface charge. Therefore, from the results of this study, these polyphosphate-based particles have potential as a drug carrier into articular cartilage and warrant further development.


Assuntos
Cartilagem Articular , Cálcio/metabolismo , Polifosfatos , Condrócitos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38946589

RESUMO

In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, that integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated in alginate-collagen type I hydrogel rings, enabling robust angiogenesis and the formation of intricate vascular-like networks. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of endothelial cells within the rings promotes angiogenic network formation and the organized development of vascular-like networks through facilitated constrained deposition of the cells within the hydrogel matrix forming tissue-like structures. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understanding the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering and regenerative applications.

4.
J Mater Chem B ; 11(36): 8804-8816, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668597

RESUMO

Osteoarthritis (OA) is a progressive disease, involving the progressive breakdown of cartilage, as well as changes to the synovium and bone. There are currently no disease-modifying treatments available clinically. An increasing understanding of the disease pathophysiology is leading to new potential therapeutics, but improved approaches are needed to deliver these drugs, particularly to cartilage tissue, which is avascular and contains a dense matrix of collagens and negatively charged aggrecan proteoglycans. Cationic delivery vehicles have been shown to effectively penetrate cartilage, but these studies have thus far largely focused on proteins or nanoparticles, and the effects of macromolecular architectures have not yet been explored. Described here is the synthesis of a small library of polycations composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) with linear, 4-arm, or 8-arm structures and varying degrees of polymerization (DP) by reversible addition fragmentation chain-transfer (RAFT) polymerization. Uptake and retention of the polycations in bovine articular cartilage was assessed. While all polycations penetrated cartilage, uptake and retention generally increased with DP before decreasing for the highest DP. In addition, uptake and retention were higher for the linear polycations compared to the 4-arm and 8-arm polycations. In general, the polycations were well tolerated by bovine chondrocytes, but the highest DP polycations imparted greater cytotoxicity. Overall, this study reveals that linear polymer architectures may be more favorable for binding to the cartilage matrix and that the DP can be tuned to maximize uptake while minimizing cytotoxicity.


Assuntos
Cartilagem Articular , Polímeros , Animais , Bovinos , Transporte Biológico , Condrócitos
5.
Biosens Bioelectron ; 236: 115421, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244083

RESUMO

We developed a multi-pronged approach to enhance the detection sensitivity of localized surface plasmon resonance (LSPR) sensor chips to detect SARS-CoV-2. To this end, poly(amidoamine) dendrimers were immobilized onto the surface of LSPR sensor chips to serve as templates to further conjugate aptamers specific for SARS-CoV-2. The immobilized dendrimers were shown to reduce surface nonspecific adsorptions and increase capturing ligand density on the sensor chips, thereby improving detection sensitivity. To characterize the detection sensitivity of the surface-modified sensor chips, SARS-CoV-2 spike protein receptor-binding domain was detected using LSPR sensor chips with different surface modifications. The results showed that the dendrimer-aptamer modified LSPR sensor chip exhibited a limit of detection (LOD) of 21.9 pM, a sensitivity that was 9 times and 152 times more sensitive than the traditional aptamer- or antibody-based LSPR sensor chips, respectively. In addition, detection sensitivity was further improved by combining rolling circle amplification product and gold nanoparticles to further amplify the detection signals by increasing both the target mass and plasmonic coupling effects. Using pseudo SARS-CoV-2 viral particles as detection targets, we demonstrated that this combined signal intensification approach further enhanced the detection sensitivity by 10 folds with a remarkable LOD of 148 vp/mL, making it one of the most sensitive SARS-CoV-2 detection assays reported to date. These results highlight the potential of a novel LSPR-based detection platform for sensitive and rapid detection of COVID-19 infections, as well as other viral infections and point-of-care applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Dendrímeros , Nanopartículas Metálicas , Humanos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Ouro/química , COVID-19/diagnóstico , Nanopartículas Metálicas/química , SARS-CoV-2
6.
Acta Biomater ; 170: 556-566, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683966

RESUMO

The mechanical properties of the aorta are influenced by the extracellular matrix, a network mainly comprised of fibers and glycosaminoglycans (GAG). In this work, we demonstrate that GAG contribute to the opening angle (a marker of circumferential residual stresses) in intact and glycated aortic tissue. Enzymatic GAG depletion was associated with a decrease in the opening angle, by approximately 25% (p = 0.009) in the ascending (AS) region, 32% (p = 0.003) in the aortic arch (AR), and 42% (p = 0.001) in the lower descending thoracic (LDT) region. A similar effect of GAG depletion on aortic ring opening angle was also observed in previously glycated tissues. Using indentation testing, we found that the radial compressive stiffness significantly increased in the AS region following GAG depletion, compared to fresh (p = 0.006) and control samples (p = 0.021), and that the compressive properties are heterogeneous along the aortic tree. A small loss of water content was also detected after GAG depletion, which was most prominent under hypotonic conditions. Finally, the AS region was also associated with a significant loss of compressive deformation (circumferential stretch that is < 1) in the inner layer of the aorta following GAG depletion, suggesting that GAG interact with ECM fibers in their effect on aortic mechanics. The importance of this work lies in its identification of the role of GAG in modulating the mechanical properties of the aorta, namely the circumferential residual stresses and the radial compressive stiffness, as well as contributing to the swelling state and the level of circumferential prestretch in the tissue. STATEMENT OF SIGNIFICANCE: The mechanical properties of the aorta are influenced by the composition and organization of its extracellular matrix (ECM) and are highly relevant to medical conditions affecting the structural integrity of the aorta. The extent of contribution of glycosaminoglycans (GAG), a relatively minor ECM component, to the mechanical properties of the aorta, remains poorly characterized. This works shows that GAG contribute on average 30% to the opening angle (an indicator of circumferential residual stresses) of porcine aortas, and that GAG-depletion is associated with an increased radial compressive stiffness of the aorta. GAG-depletion was also associated with a loss of water content and compressive deformation in the inner layers of the aortic wall providing insight into potential mechanisms for their biomechanical role.


Assuntos
Aorta Torácica , Glicosaminoglicanos , Suínos , Animais , Estresse Mecânico , Aorta , Água , Fenômenos Biomecânicos
7.
Ann Biomed Eng ; 50(2): 157-168, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028784

RESUMO

The heterogeneity and contribution of collagen and elastin to residual stresses have been thoroughly studied, but more recently, glycosaminoglycans (GAGs) also emerged as potential regulators. In this study, the opening angle of aortic rings (an indicator of circumferential residual stresses) and the mural distributions of sulfated GAGs (sGAG), collagen, and elastin were quantified in the ascending, aortic arch and descending thoracic regions of 5- to 6-month-old pigs. The opening angle correlated positively with the aortic ring's mean radius and thickness, with good and moderate correlations respectively. The correlations between the sGAG, collagen, elastin, and collagen:sGAG ratio and the opening angle were evaluated to identify aortic compositional factors that could play roles in regulating circumferential residual stresses. The total collagen:sGAG ratio displayed the strongest correlation with the opening angle (r = - 0.715, p < 0.001), followed by the total sGAG content which demonstrated a good correlation (r = 0.623, p < 0.001). Additionally, the intramural gradients of collagen, sGAG and collagen:sGAG correlated moderately with the opening angle. We propose that, in addition to the individual role sGAG play through their content and intramural gradient, the interaction between collagen and sGAG should be considered when evaluating circumferential residual stresses in the aorta.


Assuntos
Aorta Torácica/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Tórax/metabolismo , Animais , Suínos
8.
Sci Total Environ ; 811: 151317, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757102

RESUMO

This study investigates and compares the ammonia removal kinetics, attachment, biofilm development and anammox bacteria enrichment on various surface modified carriers throughout the 163 days of start-up of an MBBR system: virgin, dextran-functionalized carriers, silica-functionalized and pre-seeded denitrifying carriers. Silica-functionalized carriers along with pre-seeded denitrifying carriers induced significant higher kinetics, faster biofilm growth and greater anammox bacteria enrichment during the 64 days of operation compared to non-modified virgin and dextran-functionalized carriers. The elevated anammox bacteria counts along with the elevated kinetics of all carriers measured at day 106 indicated that the completed biofilm growth and biofilm maturation are achieved prior to or at day 106 of start-up. The NH4+-N removal rate for virgin, dextran-functionalized, silica-functionalized and pre-seeded denitrifying carriers were achieved 0.684 ± 0.019, 0.608 ± 0.016, 0.634 ± 0.017 and 0.665 ± 0.018 g NH4+-N/m2/d, respectively, at day 106. The results demonstrate that the silica-functionalized and pre-seeded denitrifying carriers offer advantages during the early stage of start-up while the dextran-functionalized carriers did not reduce the start-up period for anammox biofilm.


Assuntos
Biofilmes , Reatores Biológicos , Amônia , Oxidação Anaeróbia da Amônia , Anaerobiose , Nitrogênio , Oxirredução , Esgotos
9.
Biomaterials ; 286: 121548, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588688

RESUMO

Articular cartilage is comprised of zones that vary in architecture, extracellular matrix composition, and mechanical properties. Here, we designed and engineered a porous zonal microstructured scaffold from a single biocompatible polymer (poly [ϵ-caprolactone]) using multiple fabrication strategies: electrospinning, spherical porogen leaching, directional freezing, and melt electrowriting. With this approach we mimicked the zonal structure of articular cartilage and produced a stiffness gradient through the scaffold which aligns with the mechanics of the native tissue. Chondrocyte-seeded scaffolds accumulated extracellular matrix including glycosaminoglycans and collagen II over four weeks in vitro. This prompted us to further study the repair efficacy in a skeletally mature porcine model. Two osteochondral lesions were produced in the trochlear groove of 12 animals and repaired using four treatment conditions: (1) microstructured scaffold, (2) chondrocyte seeded microstructured scaffold, (3) MaioRegen™, and (4) empty defect. After 6 months the defect sites were harvested and analyzed using histology, micro computed tomography, and Raman microspectroscopy mapping. Overall, the scaffolds were retained in the defect space, repair quality was repeatable, and there was clear evidence of osteointegration. The repair quality of the microstructured scaffolds was not superior to the control based on histological scoring; however, the lower score was biased by the lack of histological staining due to the limited degradation of the implant at 6 months. Longer follow up studies (e.g., 1 yr) will be required to fully evaluate the efficacy of the microstructured scaffold. In conclusion, we found consistent scaffold retention, osteointegration, and prolonged degradation of the microstructured scaffold, which we propose may have beneficial effects for the long-term repair of osteochondral defects.


Assuntos
Cartilagem Articular , Alicerces Teciduais , Animais , Condrócitos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Microtomografia por Raio-X
10.
IEEE Trans Biomed Eng ; 68(12): 3491-3500, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33872141

RESUMO

While elastin and collagen have received a lot of attention as major contributors to aortic biomechanics, glycosaminoglycans (GAGs) and proteoglycans (PGs) recently emerged as additional key players whose roles must be better elucidated if one hopes to predict aortic ruptures caused by aneurysms and dissections more reliably. GAGs are highly negatively charged polysaccharide molecules that exist in the extracellular matrix (ECM) of the arterial wall. In this critical review, we summarize the current understanding of the contributions of GAGs/PGs to the biomechanics of the normal aortic wall, as well as in the case of aortic diseases such as aneurysms and dissections. Specifically, we describe the fundamental swelling behavior of GAGs/PGs and discuss their contributions to residual stresses and aortic stiffness, thereby highlighting the importance of taking these polyanionic molecules into account in mathematical and numerical models of the aorta. We suggest specific lines of investigation to further the acquisition of experimental data to complement simulations and solidify our current understanding. We underscore different potential roles of GAGs/PGs in thoracic aortic aneurysm (TAAD) and abdominal aortic aneurysm (AAA). Namely, we report findings according to which the accumulation of GAGs/PGs in TAAD causes stress concentrations which may be sufficient to initiate and propagate delamination. On the other hand, there seems to be no clear indication of a relationship between the marked reduction in GAG/PG content and the stiffening and weakening of the aortic wall in AAA.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma da Aorta Torácica , Glicosaminoglicanos , Proteoglicanas , Aorta , Matriz Extracelular , Humanos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2816-2819, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018592

RESUMO

In this computational modelling work, we explored the mechanical roles that various glycosaminoglycans (GAGs) distributions may play in the porcine ascending aortic wall, by studying both the transmural residual stress as well as the opening angle in aortic ring samples. A finite element (FE) model was first constructed and validated against published data generated from rodent aortic rings. The FE model was then used to simulate the response of porcine ascending aortic rings with different GAG distributions prescribed through the wall of the aorta. The results indicated that a uniform GAG distribution within the aortic wall did not induce residual stresses, allowing the aortic ring to remain closed when subjected to a radial cut. By contrast, a heterogeneous GAG distribution led to the development of residual stresses which could be released by a radial cut, causing the ring to open. The residual stresses and opening angle were shown to be modulated by the GAG content, gradient, and the nature of the transmural distribution.


Assuntos
Aorta , Glicosaminoglicanos , Túnica Adventícia , Animais , Valva Aórtica , Estresse Mecânico , Suínos
12.
Sci Adv ; 6(13): eaay7608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32232154

RESUMO

Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate regeneration. However, the development of approaches to reprogram CBE, toward the treatment of substantial tissue injuries, has been limited thus far. Here, we show that induced repair in a rabbit model of weight-bearing bone defects is greatly enhanced using a bioenergetic-active material (BAM) scaffold compared to commercialized poly(lactic acid) and calcium phosphate ceramic scaffolds. This material was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation.


Assuntos
Materiais Biocompatíveis/química , Metabolismo Energético , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Animais , Regeneração Óssea , Fenômenos Químicos , Redes e Vias Metabólicas , Coelhos , Análise Espectral , Alicerces Teciduais/química
13.
J Mater Chem B ; 6(35): 5604-5612, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30283632

RESUMO

Hydrogels are promising materials for mimicking the extra-cellular environment. Here, we present a simple methodology for the formation of a free-standing viscoelastic hydrogel from the abundant and low cost protein serum albumin. We show that the mechanical properties of the hydrogel exhibit a complicated behaviour as a function of the weight fraction of the protein component. We further use X-ray scattering to shed light on the mechanism of gelation from the formation of a fibrillary network at low weight fractions to interconnected aggregates at higher weight fractions. Given the match between our hydrogel elasticity and that of the myocardium, we investigated its potential for supporting cardiac cells in vitro. Interestingly, these hydrogels support the formation of several layers of myocytes and significantly promote the maintenance of a native-like gene expression profile compared to those cultured on glass. When confronted with a multicellular ventricular cell preparation, the hydrogels can support macroscopically contracting cardiac-like tissues with a distinct cell arrangement, and form mm-long vascular-like structures. We envisage that our simple approach for the formation of an elastic substrate from an abundant protein makes the hydrogel a compelling biomedical material candidate for a wide range of cell types.

14.
Sci Adv ; 3(12): e1701156, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226241

RESUMO

Medial calcification in the human aorta accumulates during aging and is known to be aggravated in several diseases. Atherosclerosis, another major cause of cardiovascular calcification, shares some common aggravators. However, the mechanisms of cardiovascular calcification remain poorly understood. To elucidate the relationship between medial aortic calcification and atherosclerosis, we characterized the cross-sectional distributions of the predominant minerals in aortic tissue, apatite and whitlockite, and the associated extracellular matrix. We also compared the cellular changes between atherosclerotic and nonatherosclerotic human aortic tissues. This was achieved through the development of Raman spectroscopy imaging methods that adapted algorithms to distinguish between the major biomolecules present within these tissues. We present a relationship between apatite, cholesterol, and triglyceride in atherosclerosis, with the relative amount of all molecules concurrently increased in the atherosclerotic plaque. Further, the increase in apatite was disproportionately large in relation to whitlockite in the aortic media directly underlying a plaque, indicating that apatite is more pathologically significant in atherosclerosis-aggravated medial calcification. We also discovered a reduction of ß-carotene in the whole aortic intima, including a plaque in atherosclerotic aortic tissues compared to nonatherosclerotic tissues. This unprecedented biomolecular characterization of the aortic tissue furthers our understanding of pathological and physiological cardiovascular calcification events in humans.


Assuntos
Aorta/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Adolescente , Adulto , Idoso , Aorta/química , Aorta/patologia , Apatitas/análise , Aterosclerose/patologia , Fosfatos de Cálcio/análise , Estudos de Casos e Controles , Colesterol/análise , Ésteres do Colesterol/análise , Humanos , Pessoa de Meia-Idade , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Análise Espectral Raman , Triglicerídeos/análise , Túnica Íntima/química , Túnica Íntima/diagnóstico por imagem , beta Caroteno/análise
15.
Acta Biomater ; 51: 75-88, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087486

RESUMO

Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. STATEMENT OF SIGNIFICANCE: Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/citologia , Colágeno/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Metaloproteinase 7 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Oligopeptídeos/farmacologia , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno/metabolismo , Força Compressiva , DNA/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Cinética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
16.
Nat Commun ; 8: 15509, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593951

RESUMO

Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin ß1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the ß1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor ß1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Epitélio/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Integrina alfa3beta1/metabolismo , Laminina/metabolismo , Glândulas Mamárias Humanas/citologia , Metaloproteinase 2 da Matriz/metabolismo , Membranas Artificiais , Camundongos , Peritônio/metabolismo , Ligação Proteica , Transdução de Sinais
17.
ACS Cent Sci ; 2(12): 885-895, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28058277

RESUMO

Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance.

18.
Biomaterials ; 99: 56-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27214650

RESUMO

Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications.


Assuntos
Proteínas de Bactérias/química , Materiais Biomiméticos/química , Condrogênese , Colágeno/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/citologia , Proteína ADAMTS4/química , Proteínas de Bactérias/genética , Materiais Biomiméticos/metabolismo , Cartilagem Articular/citologia , Diferenciação Celular , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/química , Endopeptidases/química , Matriz Extracelular/ultraestrutura , Humanos , Metaloproteinase 7 da Matriz/química , Peptídeos/química , Proteólise , Streptococcus , Engenharia Tecidual/métodos
19.
Adv Healthc Mater ; 5(13): 1656-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27219220

RESUMO

Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications.


Assuntos
Proteínas de Bactérias/química , Condrócitos/metabolismo , Condrogênese , Colágeno/química , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Condrócitos/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos
20.
Biomaterials ; 26(35): 7319-28, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16000220

RESUMO

The present work assesses the potential of three-dimensional porous titanium scaffolds produced by a novel powder metallurgy process for applications in bone engineering through in vitro experimentation. Mouse MC3T3-E1 pre-osteoblasts were used to investigate the proliferation (DNA content), differentiation (alkaline phosphatase activity and osteocalcin release) and mineralisation (calcium content) processes of cells on titanium scaffolds with average pore sizes ranging from 336 to 557 microm, using mirror-polished titanium as reference material. Scanning electron microscopy was employed to qualitatively corroborate the results. Cells proliferate on all materials before reaching a plateau at day 9, with proliferation rates being significantly higher on foams (ranging from 123 to 163 percent per day) than on the reference material (80% per day). Alkaline phosphatase activity is also significantly elevated on porous scaffolds following the proliferation stage. However, cells on polished titanium exhibit greater osteocalcin release toward the end of the differentiation process, resulting in earlier mineralisation of the extracellular matrix. Nevertheless, the calcium content is similar on all materials at the end of the experimental period. Average pore size of the porous structures does not have a major effect on cells as determined by the various analyses, affecting only the proliferation stage. Thus, the microstructured titanium scaffolds direct the behaviour of pre-osteoblasts toward a mature state capable of mineralising the extracellular matrix.


Assuntos
Materiais Biocompatíveis/química , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Titânio/química , Células 3T3 , Animais , Materiais Biocompatíveis/análise , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Teste de Materiais , Camundongos , Porosidade , Propriedades de Superfície , Titânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA