Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 131, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183264

RESUMO

BACKGROUND: The severe course of COVID-19 causes cardiovascular injuries, although the mechanisms involved are still not fully recognized, linked, and understood. Their characterization is of great importance with the establishment of the conception of post-acute sequelae of COVID-19, referred to as long COVID, where blood clotting and endothelial abnormalities are believed to be the key pathomechanisms driving circulatory system impairment. METHODS: The presented study investigates temporal changes in plasma proteins in COVID-19 patients during hospitalization due to SARS-CoV-2 infection and six months after recovery by targeted SureQuant acquisition using PQ500 panel. RESULTS: In total, we identified 167 proteins that were differentially regulated between follow-up and hospitalization, which functionally aggregated into immune system activation, complement and coagulation cascades, interleukins signalling, platelet activation, and extracellular matrix organization. Furthermore, we found that temporal quantitative changes in acute phase proteins correlate with selected clinical characteristics of COVID-19 patients. CONCLUSIONS: In-depth targeted proteome investigation evidenced substantial changes in plasma protein composition of patients during and recovering from COVID-19, evidencing a wide range of functional pathways induced by SARS-CoV-2 infection. In addition, we show that a subset of acute phase proteins, clotting cascade regulators and lipoproteins could have clinical value as potential predictors of long-term cardiovascular events in COVID-19 convalescents.


Assuntos
Proteínas Sanguíneas , COVID-19 , Proteoma , SARS-CoV-2 , Humanos , COVID-19/sangue , Proteoma/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Idoso , Adulto , Proteômica/métodos , Proteínas de Fase Aguda/metabolismo
2.
Pharmacol Res ; : 107428, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303773

RESUMO

Metabolic diseases that include obesity and metabolic-associated fatty liver disease (MAFLD) are a rapidly growing worldwide public health problem. The pathogenesis of MAFLD includes abnormally increased lipogenesis, chronic inflammation, and mitochondrial dysfunction. Mounting evidence suggests that hydrogen sulfide (H2S) is an important player in the liver, regulating lipid metabolism and mitochondrial function. However, direct delivery of H2S to mitochondria has not been investigated as a therapeutic strategy in obesity-related metabolic disorders. Therefore, our aim was to comprehensively evaluate the influence of prolonged treatment with a mitochondria sulfide delivery molecule (AP39) on the development of fatty liver and obesity in a high fat diet (HFD) fed mice. Our results demonstrated that AP39 reduced hepatic steatosis in HFD-fed mice, which was corresponded with decreased triglyceride content. Furthermore, treatment with AP39 downregulated pathways related to biosynthesis of unsaturated fatty acids, lipoprotein assembly and PPAR signaling. It also led to a decrease in hepatic de novo lipogenesis by downregulating mTOR/SREBP-1/SCD1 pathway. Moreover, AP39 administration alleviated obesity in HFD-fed mice, which was reflected by reduced weight of mice and adipose tissue, decreased leptin levels in the plasma and upregulated expression of adipose triglyceride lipase in epididymal white adipose tissue (eWAT). Finally, AP39 reduced inflammation in the liver and eWAT measured as the expression of proinflammatory markers (Il1b, Il6, Tnf, Mcp1), which was due to downregulated mTOR/NF-κB pathway. Taken together, mitochondria-targeted sulfide delivery molecules could potentially provide a novel therapeutic approach to the treatment/prevention of obesity-related metabolic disorders.

3.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070749

RESUMO

Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin-angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1-7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1-7) and thus favors Ang-(1-7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE-/- mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE-/- mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE-/- mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Aterosclerose/tratamento farmacológico , Diminazena/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Taurina/biossíntese , Angiotensina I/genética , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Dieta Hiperlipídica , Diminazena/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Células THP-1 , Taurina/agonistas
4.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639029

RESUMO

Atherosclerosis and NAFLD are the leading causes of death worldwide. The hallmark of NAFLD is triglyceride accumulation caused by an imbalance between lipogenesis de novo and fatty acid oxidation. Agmatine, an endogenous metabolite of arginine, exerts a protective effect on mitochondria and can modulate fatty acid metabolism. In the present study, we investigate the influence of agmatine on the progression of atherosclerotic lesions and the development of hepatic steatosis in apoE-/- mice fed with a Western high-fat diet, with a particular focus on its effects on the DNL pathway in the liver. We have proved that treatment of agmatine inhibits the progression of atherosclerosis and attenuates hepatic steatosis in apoE-/- mice on a Western diet. Such effects are associated with decreased total macrophage content in atherosclerotic plaque as well as a decrease in the TG levels and the TG/HDL ratio in plasma. Agmatine also reduced TG accumulation in the liver and decreased the expression of hepatic genes and proteins involved in lipogenesis de novo such as SREBP-1c, FASN and SCD1. In conclusion, agmatine may present therapeutic potential for the treatment of atherosclerosis and fatty liver disease. However, an exact understanding of the mechanisms of the advantageous actions of agmatine requires further study.


Assuntos
Agmatina/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta Ocidental , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Lipídeos/sangue , Lipogênese , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Biomarcadores , HDL-Colesterol/sangue , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Feminino , Imuno-Histoquímica , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout para ApoE , Triglicerídeos/sangue
5.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925684

RESUMO

Atherosclerosis and nonalcoholic fatty liver disease (NAFLD) are frequent causes of death in the Western countries. Recently, it has been shown that autophagy dysfunction plays an important role in the pathogenesis of both atherosclerosis and NAFLD; thus, activators of autophagy might be useful for novel therapeutic interventions. Trehalose-a naturally occuring disaccharide present in plants, bacteria, fungi, insects, and certain types of shrimps-is a known inducer of autophagy. However, according to the literature, its anti-atherosclerotic and anti-steatotic potential seem to depend on the experimental setting. The aim of our study was to comprehensively describe the influence of a prolonged treatment with orally administered trehalose on the development of atherosclerotic lesions and hepatic steatosis in apolipoprotein E knockout (apoE-/-) mice in an experimental set up reflecting both moderate and severe proatherogenic conditions: male apoE-/- mice on a chow diet (CD) and female apoE-/- mice fed with a high-fat diet (HFD). We found that exogenous trehalose inhibited atherosclerosis and attenuated hepatic steatosis in apoE-/- mice. Such effects of trehalose were not associated with changes of plasma cholesterol, low-density lipoproteins (LDL), or high-density lipoproteins (HDL). Moreover, the anti-steatotic action of trehalose in the liver was associated with the induction of autophagy. The exact molecular mechanisms of both the anti-atherosclerotic action of trehalose and its inhibitory effect on liver steatosis require further clarification.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Autofagia/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Trealose/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Trealose/administração & dosagem , Trealose/farmacologia
6.
Clin Exp Pharmacol Physiol ; 45(7): 711-719, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29485188

RESUMO

Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) plays an important role, not only in endothelium-dependent vasodilation but also in lipid and glucose homeostasis in the liver and exerts beneficial effects on mitochondrial biogenesis and respiration. Thus, the aim of our study was to use iTRAQ-based quantitative proteomics to investigate the changes in protein expression in the mitochondrial and cytosolic fractions isolated from the liver of the double (apolipoprotein E (apoE) and eNOS) knockout (apoE/eNOS-DKO) mice as compared to apoE KO mice (apoE-/- ) - an animal model of atherosclerosis and hepatic steatosis. Collectively, the deficiency of eNOS resulted in increased expression of proteins related to gluconeogenesis, fatty acids and cholesterol biosynthesis as well as the decreased expression of proteins participated in triglyceride breakdown, cholesterol transport, protein transcription & translation and processing in endoplasmic reticulum (ER). Moreover, one of the most downregulated proteins were major urinary proteins (MUPs), which are abundantly expressed in the liver and were shown to be involved in the regulation of lipid and glucose metabolism. The exact functional consequences of the revealed alterations require further investigation.


Assuntos
Apolipoproteínas E/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Fígado/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Proteínas/metabolismo , Proteômica , Animais , Apolipoproteínas E/deficiência , Feminino , Camundongos , Óxido Nítrico Sintase Tipo III/deficiência
7.
Clin Proteomics ; 14: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209155

RESUMO

BACKGROUND: It is well known that fibrin network binds a large variety of proteins, including inhibitors and activators of fibrinolysis, which may affect clot properties, such as stability and susceptibility to fibrinolysis. Specific plasma clot composition differs between individuals and may change in disease states. However, the plasma clot proteome has not yet been in-depth analyzed, mainly due to technical difficulty related to the presence of a highly abundant protein-fibrinogen and fibrin that forms a plasma clot. METHODS: The aim of our study was to optimize quantitative proteomic analysis of fibrin clots prepared ex vivo from citrated plasma of the peripheral blood drawn from patients with prior venous thromboembolism (VTE). We used a multiple enzyme digestion filter aided sample preparation, a multienzyme digestion (MED) FASP method combined with LC-MS/MS analysis performed on a Proxeon Easy-nLC System coupled to the Q Exactive HF mass spectrometer. We also evaluated the impact of peptide fractionation with pipet-tip strong anion exchange (SAX) method on the obtained results. RESULTS: Our proteomic approach revealed 476 proteins repeatedly identified in the plasma fibrin clots from patients with VTE including extracellular vesicle-derived proteins, lipoproteins, fibrinolysis inhibitors, and proteins involved in immune responses. The MED FASP method using three different enzymes: LysC, trypsin and chymotrypsin increased the number of identified peptides and proteins and their sequence coverage as compared to a single step digestion. Peptide fractionation with a pipet-tip strong anion exchange (SAX) protocol increased the depth of proteomic analyses, but also extended the time needed for sample analysis with LC-MS/MS. CONCLUSIONS: The MED FASP method combined with a label-free quantification is an excellent proteomic approach for the analysis of fibrin clots prepared ex vivo from citrated plasma of patients with prior VTE.

8.
Int J Mol Sci ; 18(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218653

RESUMO

The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE-/-) mice upon treatment with Alda-1-a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE-/- mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE-/- mice. Importantly, prolonged treatment of apoE-/- mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Apolipoproteínas E/deficiência , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Proteômica/métodos , Aldeídos/sangue , Animais , Apolipoproteínas E/metabolismo , Apoptose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/patologia , Marcação por Isótopo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Biogênese de Organelas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Int J Mol Sci ; 18(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28777310

RESUMO

Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.


Assuntos
Agmatina/uso terapêutico , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Agmatina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Apolipoproteínas E/metabolismo , Aterosclerose/sangue , Peso Corporal/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo
10.
Brain Behav Immun ; 51: 144-153, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26254233

RESUMO

The etiology of depression remains still unclear. Recently, it has been proposed, that mitochondrial dysfunction may be associated with development of mood disorders, such as depression, bipolar disorder and anxiety disorders. Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda-1, a small-molecule activator of ALDH2, on depressive- and anxiety-like behaviors in an animal model of depression - the prenatally stressed rats - using behavioral, molecular and proteomic methods. Prolonged Alda-1 administration significantly increased the climbing time, tended to reduce the immobility time and increased the swimming time of the prenatally stressed rats in the forced swim test. Moreover, treatment of prenatally stressed rats with Alda-1 significantly increased number of entries into the open arms of the maze and the time spent therein, as assessed by elevated plus-maze test. Such actions were associated with reduction of plasma 4-HNE-protein content, decrease of TNF-α mRNA and increase of PGC-1α (regulator of mitochondrial biogenesis) mRNA level in the frontal cortex and hippocampus of the prenatally stressed rats as well as with normalization of peripheral immune parameters and significant changes in expression of 6 and 4 proteins related to mitochondrial functions in the frontal cortex and hippocampus, respectively. Collectively, ALDH2 activation by Alda-1 led to a significant attenuation of depressive- and anxiety-like behaviors in the prenatally stressed rats. The pattern of changes suggested mitoprotective effect of Alda-1, however the exact functional consequences of the revealed alterations require further investigation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Ansiedade/enzimologia , Transtorno Depressivo/enzimologia , Mitocôndrias/enzimologia , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estresse Psicológico/enzimologia , Estresse Psicológico/psicologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Linfócitos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Biochim Biophys Acta ; 1834(12): 2463-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23988828

RESUMO

Excessive action of angiotensin II on mitochondria has been shown to play an important role in mitochondrial dysfunction, a common feature of atherogenesis and kidney injury. Angiotensin-(1-7)/Mas receptor axis constitutes a countermeasure to the detrimental effects of angiotensin II on AT1 receptors. The aim of the study was to assess the effects of angiotensin-(1-7) peptidomimetic AVE0991 on the kidney mitochondrial proteome in widely used animal model of atherosclerosis (apoE(-/-) mice). Proteins changed in apoE(-/-) mice belonged to the groups of antioxidant enzymes, apoptosis regulators, inflammatory factors and metabolic enzymes. Importantly, AVE0991 partially reversed atherosclerosis-related changes in apoE(-/-) mice.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Imidazóis/farmacologia , Rim/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Mediadores da Inflamação/metabolismo , Rim/lesões , Rim/patologia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteoma/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
Pharmacol Rep ; 76(4): 902-909, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913153

RESUMO

BACKGROUND: Metabolic dysfunction-associated fatty liver disease has been well documented as a key independent risk factor for the development of atherosclerosis. A growing body of evidence suggests that due to its numerous favorable molecular effects, trehalose may exert beneficial effects in counteracting liver steatosis. In our previous study, we described the antiatherosclerotic and antisteatotic properties of trehalose, which we attributed to the induction of autophagy. Considering the pleiotropic activities of trehalose, our present study aimed to extend our preliminary results with the comprehensive examination of proteome-wide changes in the livers of high-fat-fed apoE-/- mice. METHODS: Thus, we applied modern, next-generation proteomic methodology to comprehensively analyze the effects of trehalose on the alterations of liver proteins in apoE-/- mice. RESULTS: Our proteomic analysis showed that the administration of trehalose elicited profound changes in the liver proteome of apoE-/- mice. The collected data allowed the identification and quantitation of 3 681 protein groups of which 129 were significantly regulated in the livers of trehalose-treated apoE-/- mice. CONCLUSIONS: The presented results are the first to highlight the effects of disaccharide on the induction of proteins mainly related to the metabolism and elimination of lipids, especially by peroxisomal ß-oxidation. Our study provides evidence for the pleiotropic activity of trehalose, extending our initial observations of its potential mechanisms responsible for mitigating of liver steatosis, which paves the way for new pharmacological strategies in fatty liver disease.


Assuntos
Apolipoproteínas E , Modelos Animais de Doenças , Fígado Gorduroso , Fígado , Proteoma , Trealose , Animais , Trealose/farmacologia , Camundongos , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Apolipoproteínas E/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Masculino , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Proteômica/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Metabolismo dos Lipídeos/efeitos dos fármacos
13.
Biomed Pharmacother ; 180: 117527, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39405912

RESUMO

Atherosclerosis is a leading cause of morbidity and mortality in the Western countries. Mounting evidence points to the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Recently, it has been shown that mitochondrial hydrogen sulfide (H2S) can complement the bioenergetic role of Krebs cycle leading to improved mitochondrial function. However, controlled, direct delivery of H2S to mitochondria was not investigated as a therapeutic strategy in atherosclerosis. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with mitochondrial H2S donor AP39 on the development of atherosclerotic lesions in apolipoprotein E knockout (apoE-/-) mice. Our results indicated that AP39 reduced atherosclerosis in apoE-/- mice and stabilized atherosclerotic lesions through decreased total macrophage content and increased collagen depositions. Moreover, AP39 reduced proinflammatory M1-like macrophages and increased anti-inflammatory M2-like macrophages in atherosclerotic lesions. It also upregulated pathways related to mitochondrial function, such as cellular respiration, fatty acid ß-oxidation and thermogenesis while downregulated pathways associated with immune system, platelet aggregation and complement and coagulation cascades in the aorta. Furthermore, treatment with AP39 increased the expression of mitochondrial brown fat uncoupling protein 1 (UCP1) in vascular smooth muscle cells (VSMCs) in atherosclerotic lesions and upregulated mRNA expression of other thermogenesis-related genes in the aorta but not perivascular adipose tissue (PVAT) of apoE-/- mice. Finally, AP39 treatment decreased markers of activated endothelium and increased endothelial nitric oxide synthase (eNOS) expression and activation. Taken together, mitochondrial H2S donor AP39 could provide potentially a novel therapeutic approach to the treatment/prevention of atherosclerosis.

14.
Biomed Pharmacother ; 167: 115443, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703660

RESUMO

BACKGROUND: Cardiac fibrosis contributes to end-stage extracellular matrix remodeling and heart failure (HF). Cardiac fibroblasts (CFs) differentiate into myofibroblasts (myoFbs) to preserve the structural integrity of the heart; however, the molecular mechanisms regulating CF transdifferentiation remain poorly understood. Protein arginine deiminase (PAD), which converts arginine to citrulline, has been shown to play a role in myocardial infarction, fibrosis, and HF. This study aimed to investigate the role of PAD in CF differentiation to myoFbs and identify the citrullinated proteins that were associated with phenotypic changes in CFs. RESULTS: Gene expression analysis showed that PAD1 and PAD2 isoforms, but not PAD4 isoforms, were abundant in both CFs and myoFbs, and PAD1 was significantly upregulated in myoFbs. The pan-PAD inhibitor BB-Cl-amidine (BB-Cl) downregulated the mRNA expression of PAD1 and PAD2 as well as the protein expression of the fibrosis marker COL1A1 in CFs and myoFbs. Interestingly, a proteomic approach pointed to the activation of the Nrf2/HO-1 signaling pathway upon BB-Cl treatment in CFs and myoFbs. BB-Cl administration resulted in the upregulation of HO-1 at both the gene and protein levels in CFs and myoFbs. Importantly, the protein citrullination landscape of CFs consisting of 86 novel citrullination sites associated with focal adhesion (FN1(R1054)), inflammation (TAGLN(R12)) and DNA replication (EEF2(R767)) pathways was identified. CONCLUSIONS: In summary, we revealed that BB-Cl treatment resulted in increased HO-1 expression via the Nrf2 pathway, which could prevent excessive tissue damage, thereby leading to substantial clinical benefits for the treatment of cardiac fibrosis.

15.
Eur J Pharmacol ; 944: 175566, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739078

RESUMO

BACKGROUND: Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS: The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS: 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS: In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Macrófagos , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia , Camundongos Knockout para ApoE , Apolipoproteínas E , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Methods Mol Biol ; 2420: 107-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905169

RESUMO

Citrullination, the Ca2+-driven enzymatic conversion of arginine residues to citrulline, is a posttranslational modification, implicated in several physiological and pathological processes. Several methods to detect citrullinated proteins have been developed, including color development reagent, fluorescence, phenylglyoxal, and antibody-based methods. These methods yet suffer from limitations in sensitivity, specificity, or citrullinated site determination. Mass spectrometry (MS)-based proteomic analysis has emerged as a promising method to resolve these problems. However, due to low abundance of citrullinated proteins and similar MS features to deamidation of asparagine and glutamine, confident identification of citrullinated proteome is challenging. Here, we present a systematic approach to identify a compendium of steps to enhance the number of detected citrullinated residue and implement diagnostic MS feature that allow the confidence of MS-based identifications. Our method is based on the concept of generation of hyper-citrullinated library with high-pH reversed-phase peptide fractionation that allows to enrich in low abundance citrullinated peptides and amplify the effect of charge loss upon citrullination. Application of our approach to complex global citrullino-proteome datasets demonstrates the confident assessment of citrullinated peptides, thereby enhancing the size and functional interpretation of citrullinated proteomes.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Acetonitrilas , Cromatografia Líquida , Citrulina , Concentração de Íons de Hidrogênio , Peptídeos , Proteoma
17.
J Inflamm (Lond) ; 19(1): 20, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401289

RESUMO

BACKGROUND: Macrophages are effector cells of the innate immune system that undergo phenotypical changes in response to organ injury and repair. These cells are most often classified as proinflammatory M1 and anti-inflammatory M2 macrophages. Protein arginine deiminase (PAD), which catalyses the irreversible conversion of protein-bound arginine into citrulline, is expressed in macrophages. However, the substrates of PAD and its role in immune cells remain unclear. This study aimed to investigate the role of PAD in THP-1 macrophage polarization to the M1 and M2 phenotypes and identify the citrullinated proteins and modified arginines that are associated with this biological switch using mass spectrometry. RESULTS: Our study showed that PAD2 and, to a lesser extent, PAD1 and PAD4 were predominantly expressed in M1 macrophages. We showed that inhibiting PAD expression with BB-Cl-amidine decreased macrophage polarization to the M1 phenotype (TNF-α, IL-6) and increased macrophage polarization to the M2 phenotype (MRC1, ALOX15). This process was mediated by the downregulation of proteins involved in the NF-κß pathway. Silencing PAD2 confirmed the activation of M2 macrophages by increasing the antiviral innate immune response and interferon signalling. A total of 192 novel citrullination sites associated with inflammation, cell death and DNA/RNA processing pathways were identified in M1 and M2 macrophages. CONCLUSIONS: We showed that inhibiting PAD activity using a pharmacological inhibitor or silencing PAD2 with PAD2 siRNA shifted the activation of macrophages towards the M2 phenotype, which can be crucial for designing novel macrophage-mediated therapeutic strategies. We revealed a major citrullinated proteome and its rearrangement following macrophage polarization, which after further validation could lead to significant clinical benefits for the treatment of inflammation and autoimmune diseases.

18.
Mol Immunol ; 127: 193-202, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32998073

RESUMO

BACKGROUND: Cellular peptidases are an emerging target of novel pharmacological strategies in inflammatory diseases and cancer. In this context, the dipeptidyl peptidases 8 and 9 (DPP8/9) have gained special attention due to their activities in the immune cells. However, in spite of more than hundred protein substrates identified to date by mass spectrometry-based analysis, the cellular DPP8/9 functions are still elusive. METHODS: We applied the proteomic approach (iTRAQ-2DLC-MS/MS) to comprehensively analyze the role of DPP8/9 in the regulation of macrophage activation by in-depth protein quantitation of THP-1 proteome and secretome. RESULTS: Cells pre-incubated with DPP8/9 inhibitor (1G244) prior activation (LPS or IL-4/IL-13) diminished the expression levels of M1-like response markers, but not M2-like phenotype features. This was accompanied by multiple intra- and extra-cellular protein abundance changes in THP-1 cells, related to cellular metabolism, mitochondria and endoplasmic reticulum function, as well as those engaged with inflammatory and apoptotic processes, including previously reported and novel DPP8/9 targets. CONCLUSIONS: Inhibition of DPP 8/9 had a profound effect on the THP-1 macrophage proteome and secretome, evidencing the decrease of the pro-inflammatory M1-like response. Presented results are to our best knowledge the first which, among others, highlight the metabolic effects of DPP8/9 inhibition in macrophages.


Assuntos
Dipeptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inflamação/patologia , Macrófagos/patologia , Proteoma/metabolismo , Proteômica , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Ativação de Macrófagos , Modelos Biológicos , Células THP-1
19.
Sci Rep ; 10(1): 14351, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873862

RESUMO

Pulmonary arterial hypertension (PAH) is a rare, fatal, and incurable disorder. Although advances in the understanding of the PAH pathobiology have been seen in recent years, molecular processes underlying heart remodelling over the course of PAH are still insufficiently understood. Therefore, the aim of this study was to investigate myocardial proteomic profile of rats at different stages of monocrotaline-induced PAH. Samples of left and right ventricle (LV and RV) free wall collected from 32 Wistar rats were subjected to proteomic analysis using an isobaric tag for relative quantitation method. Hemodynamic parameters indicated development of mild elevation of pulmonary artery pressure in the early PAH group (27.00 ± 4.93 mmHg) and severe elevation in the end-stage PAH group (50.50 ± 11.56 mmHg). In early PAH LV myocardium proteins that may be linked to an increase in inflammatory response, apoptosis, glycolytic process and decrease in myocardial structural proteins were differentially expressed compared to controls. During end-stage PAH an increase in proteins associated with apoptosis, fibrosis and cardiomyocyte Ca2+ currents as well as decrease in myocardial structural proteins were observed in LV. In RV during early PAH, especially proteins associated with myocardial structural components and fatty acid beta-oxidation pathway were upregulated. During end-stage PAH significant changes in RV proteins abundance related to the increased myocardial structural components, intensified fibrosis and glycolytic processes as well as decreased proteins related to cardiomyocyte Ca2+ currents were observed. At both PAH stages changes in RV proteins linked to apoptosis inhibition were observed. In conclusion, we identified changes of the levels of several proteins and thus of the metabolic pathways linked to the early and late remodelling of the left and right ventricle over the course of monocrotaline-induced PAH to delineate potential therapeutic targets for the treatment of this severe disease.


Assuntos
Miocárdio/metabolismo , Mapas de Interação de Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Hipertensão Arterial Pulmonar/metabolismo , Animais , Modelos Animais de Doenças , Ontologia Genética , Hemodinâmica , Hipertrofia Ventricular Direita/patologia , Masculino , Miocárdio/patologia , Proteínas/genética , Proteômica/métodos , Hipertensão Arterial Pulmonar/patologia , Ratos , Ratos Wistar , Remodelação Ventricular/genética
20.
J Proteomics ; 208: 103487, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31425886

RESUMO

BACKGROUND: Little is known about fibrin clot composition in relation to its structure and lysability. We investigated plasma clots protein composition and its associations with clot properties. METHODS: We studied 20 healthy subjects aged 31-49 years in whom plasma fibrin clot permeability (Ks) and clot lysis time (CLT) were determined. A proteomic analysis of plasma fibrin clots was based on quantitative liquid chromatography-mass spectrometry. RESULTS: Among 494 clot-bound proteins identified in all clots, the highest concentrations were for fibrinogen chains (about 64% of the clot mass) and fibronectin (13%). α2-antiplasmin (2.7%), factor XIIIA (1.2%), complement component C3 (1.2%), and histidine-rich glycoprotein (HRG, 0.61%) were present at relatively high concentrations. Proteins present in concentrations <0.5% included (pro)thrombin, plasminogen, apolipoproteins, or platelet factor 4 (PF4). Fibrinogen-α and -γ chains were associated with age, while body-mass index with clot-bound apolipoproteins (all p < .05). Ks correlated with fibrinogen-γ and PF4 amounts within plasma clots. CLT was associated with fibrinogen-α and -γ, PF4, and HRG (all p < .05). CONCLUSIONS: This study is the first to show associations of two key measures of clot properties with protein content within plasma clots, suggesting that looser fibrin clots with enhanced lysability contain less fibrinogen-γ chain, platelet-derived PF4, and HRG. SIGNIFICANCE: Our study for the first time suggests that more permeable fibrin clots with enhanced lysability contain less fibrinogen-γ chain, platelet-derived factor 4, and histidine-rich glycoprotein, which is related to accelerated clot lysis. The current findings might have functional consequences regarding clot structure, stability, and propagation of thrombin generation, and detailed proteomic analysis of clots in various disorders opens new perspective for coagulation and fibrin research.


Assuntos
Coagulação Sanguínea , Tempo de Lise do Coágulo de Fibrina , Fibrina/metabolismo , Fibrinogênio/metabolismo , Fator Plaquetário 4/metabolismo , Proteômica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA