Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2121425119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914147

RESUMO

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.


Assuntos
Ecossistema , Zosteraceae , Aclimatação , Animais , Evolução Biológica , Biomassa , Cadeia Alimentar , Invertebrados , Zosteraceae/genética
2.
Glob Chang Biol ; 30(1): e17048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988193

RESUMO

Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone (Haliotis rufescens) using a multi-generational split-brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO2 (1180 µatm; simulating OA) or low pCO2 (450 µatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO2 treatments for 11 months and measuring growth and reproductive potential. Early-life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re-exposed to OA as adults. Adult but not early-life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO2 treatments for the first 3 months of life in a fully factorial, split-brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life-history windows can mitigate these effects.


Assuntos
Gastrópodes , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono/efeitos adversos , Reprodução , Gastrópodes/fisiologia
3.
Mol Ecol ; 32(11): 2835-2849, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814144

RESUMO

The extent of parallel genomic responses to similar selective pressures depends on a complex array of environmental, demographic, and evolutionary forces. Laboratory experiments with replicated selective pressures yield mixed outcomes under controlled conditions and our understanding of genomic parallelism in the wild is limited to a few well-established systems. Here, we examine genomic signals of selection in the eelgrass Zostera marina across temperature gradients in adjacent embayments. Although we find many genomic regions with signals of selection within each bay there is very little overlap in signals of selection at the SNP level, despite most polymorphisms being shared across bays. We do find overlap at the gene level, potentially suggesting multiple mutational pathways to the same phenotype. Using polygenic models we find that some sets of candidate SNPs are able to predict temperature across both bays, suggesting that small but parallel shifts in allele frequencies may be missed by independent genome scans. Together, these results highlight the continuous rather than binary nature of parallel evolution in polygenic traits and the complexity of evolutionary predictability.


Assuntos
Baías , Zosteraceae , Zosteraceae/genética , Temperatura , Genômica , Frequência do Gene
4.
Proc Natl Acad Sci U S A ; 117(45): 28160-28166, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106409

RESUMO

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.


Assuntos
Biodiversidade , Clima , Pesqueiros , Cadeia Alimentar , Alismatales , Animais , Biomassa , Feminino , Peixes , Geografia , Aquecimento Global , Humanos , Masculino
5.
Proc Biol Sci ; 289(1969): 20211762, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193403

RESUMO

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.


Assuntos
Comportamento Predatório , Zosteraceae , Animais , Crustáceos , Ecossistema , Oceanos e Mares
6.
Glob Chang Biol ; 28(8): 2596-2610, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007376

RESUMO

Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species' geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species' adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine-scale (2-12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three-way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home-site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local-scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range-center eelgrass population that is pre-adapted to extremely warm temperatures similar to those experienced by low-latitude range-edge populations of eelgrass, demonstrating how reservoirs of heat-tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local-scale population differentiation and promote a phenotypic management approach to species conservation.


Assuntos
Aclimatação , Zosteraceae , Adaptação Fisiológica , Mudança Climática , Temperatura
7.
Proc Biol Sci ; 286(1900): 20182745, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940058

RESUMO

Humans have restructured food webs and ecosystems by depleting biomass, reducing size structure and altering traits of consumers. However, few studies have examined the ecological impacts of human-induced trait changes across large spatial and temporal scales and species assemblages. We compared behavioural traits and predation rates by predatory fishes on standard squid prey in protected areas of different protection levels and ages, and found that predation rates were 6.5 times greater at old, no-take (greater than 40 years) relative to new, predominantly partial-take areas (approx. 8 years), even accounting for differences in predatory fish abundance, body size and composition across sites. Individual fishes in old protected areas consumed prey at nearly twice the rate of fishes of the same species and size at new protected areas. Predatory fish exhibited on average 50% longer flight initiation distance and lower willingness to forage at new protected areas, which partially explains lower foraging rates at new relative to old protected areas. Our experiments demonstrate that humans can effect changes in functionally important behavioural traits of predator guilds at large (30 km) spatial scales within managed areas, which require protection for multiple generations of predators to recover bold phenotypes and predation rates, even as abundance rebounds.


Assuntos
Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Atividades Humanas , Comportamento Predatório , Animais , California , Kelp
8.
Am Nat ; 192(3): 287-300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125236

RESUMO

Interspecific variation in resource use is critical to understanding species diversity, coexistence, and ecosystem functioning. A growing body of research describes analogous intraspecific variation and its potential importance for population dynamics and community outcomes. However, the magnitude of intraspecific variation relative to interspecific variation in key dimensions of consumer-resource interactions remains unknown, hampering our understanding of the importance of this variation for population and community processes. In this study, we examine feeding preference through repeated laboratory choice feeding assays of 444 wild-caught individuals of eight invertebrate grazer species on rocky reefs in northern California. Between-species variation accounted for 25%-33% of the total variation in preference for the preferred resource, while between-individual variation accounted for 4%-5% of total variation. For two of the eight species, between-individual variation was significantly different from zero and on average contributed 14% and 17% of the total diet variation, even after accounting for differences due to size and sex. Therefore, even with clearly distinguishable between-species differences in mean preference, diet variation between and within individuals can contribute to the dietary niche width of species and guilds, which may be overlooked by focusing solely on species' mean resource use patterns.


Assuntos
Ecossistema , Preferências Alimentares , Invertebrados , Animais , California , Dieta , Laminaria , Rodófitas
9.
Ecology ; 99(1): 29-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083472

RESUMO

Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.


Assuntos
Comportamento Predatório , Zosteraceae , Animais , Biodiversidade , Ecossistema , Temperatura
10.
Ecol Appl ; 28(7): 1694-1714, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30063809

RESUMO

Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global-scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to better understand the potential for a temperate seagrass meadow to locally mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales Bay, an inlet on the coast of California, USA which supports a major oyster farming industry. We conducted a series of month-long model simulations to characterize processes that occur during summer and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the pH of the primary source waters into the meadow, although we did find occasional periods (hours) when seagrass metabolism may modify the pH by up to ±0.2 units. Tidal phasing relative to the diel cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering occurs during periods of the year with midday low tides. Our model results suggest that seagrass metabolism in Tomales Bay would not provide long-term ocean acidification mitigation. However, we emphasize that our model results may not hold in meadows where assumptions about depth-averaged net production and seawater residence time within the seagrass meadow differ from our model assumptions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and services that will be increasingly important as humans increasingly affect coastal ecosystems.


Assuntos
Dióxido de Carbono/química , Ecossistema , Água do Mar/química , Zosteraceae/fisiologia , California , Concentração de Íons de Hidrogênio , Modelos Biológicos , Estações do Ano
11.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411219

RESUMO

Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments.IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina, or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Zosteraceae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Geografia , Filogenia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
12.
Ecology ; 98(12): 3152-3164, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983913

RESUMO

Genetic diversity within key species can play an important role in the functioning of entire communities. However, the extent to which different dimensions of diversity (e.g., the number of genotypes vs. the extent of genetic differentiation among those genotypes) best predicts functioning is unknown and may yield clues into the different mechanisms underlying diversity effects. We explicitly test the relative influence of genotypic richness and genetic relatedness on eelgrass productivity, biomass, and the diversity of associated invertebrate grazers in a factorial field experiment using the seagrass species, Zostera marina (eelgrass). Genotypic richness had the strongest effect on eelgrass biomass accumulation, such that plots with more genotypes at the end of the experiment attained a higher biomass. Genotypic diversity (richness + evenness) was a stronger predictor of biomass than richness alone, and both genotype richness and diversity were positively correlated with trait diversity. The relatedness of genotypes in a plot reduced eelgrass biomass independently of richness. Plots containing eelgrass with greater trait diversity also had a higher abundance of invertebrate grazers, while the diversity and relatedness of eelgrass genotypes had little effect on invertebrate abundance or richness. Our work extends previous findings by explicitly relating genotypic diversity to trait diversity, thus mechanistically connecting genotypic diversity to plot-level yields. We also show that other dimensions of diversity, namely relatedness, influence eelgrass performance independent of trait differentiation. Ultimately, richness and relatedness captured fundamentally different components of intraspecific variation and should be treated as complementary rather than competing dimensions of biodiversity affecting ecosystem functioning.


Assuntos
Biodiversidade , Biomassa , Ecossistema , Zosteraceae/fisiologia , Genótipo
13.
Am Nat ; 198(2): 310-312, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34260877
14.
Ecology ; 97(1): 84-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008778

RESUMO

Functional trait differences and genetic distance are increasingly used as metrics to predict the. outcome of species interactions and the maintenance of diversity. We apply these ideas to intraspecific diversity for the seagrass Zostera marina (eelgrass), by explicitly testing the influence of trait distance and genetic relatedness on the outcome of pairwise interactions among eelgrass genotypes. Increasing trait distance (but not relatedness) between eelgrass genotypes decreased the likelihood that both would persist over a year-long field experiment, contrary to our expectations based on niche partitioning. In plots in which one genotype excluded another, the biomass and growth of the remaining genotype increased with the trait distance and genetic relatedness of the initial pair, presumably due to a legacy of past interactions. Together these results suggest that sustained competition among functionally similar genotypes did not produce a clear winner, but rapid exclusion occurred among genotypes with distinct trait combinations. Borrowing from coexistence theory, we argue that fitness differences between genotypes with distinct traits overwhelmed any stabilizing effects of niche differentiation. Previously observed effects of eelgrass genetic diversity on performance may rely on nonadditive interactions among multiple genotypes or sufficient environmental heterogeneity to increase stabilizing forces and/or interactions.


Assuntos
Variação Genética , Genótipo , Zosteraceae/genética , Biodiversidade , Biomassa , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Zosteraceae/crescimento & desenvolvimento
15.
Ecology ; 97(8): 2136-2146, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859186

RESUMO

Environmental heterogeneity contributes to coexistence by allowing species with different traits to persist when different species perform best at different times or places. This interaction between niche differences and environmental variability may also help explain relationships between biodiversity and ecosystem functioning, but few data are available to rigorously evaluate this hypothesis. We assessed how a biologically relevant aspect of environmental heterogeneity interacts with species diversity to determine ecosystem processes in a natural rocky intertidal community. We used field removals to factorially manipulate biogenic habitat heterogeneity (barnacles, bare rock, and plots that were 50/50 mixes of the two habitat types) and gastropod grazer species richness and then tracked algal community succession and recovery over the course of 1 yr. We found that herbivore diversity, substrate heterogeneity, and their interaction played unique roles in the peak abundance and timing of occurrence of different algal functional groups. Early successional microalgae were most heavily grazed in diverse herbivore assemblages and those with barnacles present, which was likely due to complementary feeding strategies among all three grazers. In contrast, late successional macroalgae were strongly influenced by the presence of a habitat generalist limpet. In this herbivore's absence, heterogeneous habitats (i.e., mixtures of bare rock and barnacles) experienced the greatest algal accumulation, which was partly a result of complementary habitat use by the remaining herbivores. The complex way habitat identity and heterogeneity altered grazer-algal interactions in our study suggests species' differences and environmental heterogeneity both separately and interactively contribute to the relationship between biodiversity and ecosystem functions.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Ecossistema , Herbivoria , Animais , Ecologia , Plantas , Alga Marinha
16.
Ecol Lett ; 18(7): 696-705, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25983129

RESUMO

Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.


Assuntos
Biodiversidade , Eutrofização , Zosteraceae/fisiologia , Animais , Biomassa , Crustáceos , Cadeia Alimentar , Gastrópodes , Genótipo , Herbivoria , Microalgas , Modelos Biológicos , Dinâmica Populacional , Zosteraceae/genética
17.
Ecology ; 95(3): 775-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24804460

RESUMO

The study of community assembly processes currently involves (a) longstanding questions about the relative importance of environmental filtering vs. niche partitioning in a wide range of ecosystems, and (b) more recent questions about methodology. The rapidly growing field of community phylogenetics has generated debate about the choice between functional traits and phylogenetic relationships for understanding species similarities, and has raised additional questions about the contribution of experimental vs. observational approaches to understanding evolutionary constraints on community assembly. In this study, we use traits, a phylogeny, and field surveys to identify the forces structuring communities of herbivorous marine amphipods and isopods living in adjacent seagrass and macroalgae. In addition, we compare our field results to a recently published mesocosm experiment that tested the effects of both trait and phylogenetic diversity on coexistence using the same species and system. With respect to community assembly processes, we found that environmental filtering was the dominant process in macroalgae habitats, that niche partitioning was the dominant process in seagrass habitats, and that the strength of these assembly mechanisms varied with seasonal fluctuations in environmental conditions and resource availability. These patterns are indicated by both phylogenetic relationships and trait distances, but the type of resources being partitioned in seagrass habitats can only be deciphered using trait data. Species coexisting in seagrass in the field differed not in their feeding niche but in traits related to microhabitat use, providing novel evidence of the relative importance of competition for food vs. habitat in structuring communities of phytophagous invertebrates. With respect to methodology, the results for seagrass habitats conflict with those obtained in mesocosms, where feeding trait diversity did promote coexistence and phylogenetic diversity had no effect. This contrast arises because a greater range of traits (some of which have much stronger phylogenetic signal than feeding traits) contribute to community assembly in the field. This highlights a mismatch between the processes that drive community assembly in the field and the processes we isolated in experimental tests, and illustrates that using phylogeny as a single proxy in both contexts may impede the synthesis of observational and experimental results.


Assuntos
Anfípodes/genética , Anfípodes/fisiologia , Filogenia , Animais , Demografia , Ecossistema , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
18.
Ecology ; 95(4): 833-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24933804

RESUMO

Most organisms interact with multiple mutualistic species that confer different functional benefits, yet current conceptual frameworks do not fully address this complexity. A network approach considers multiple mutualistic interactions within a functional type and has been largely nonmechanistic, with little attention to the fitness consequences of specific interactions. Alternatively, consumer-resource approaches have explicitly characterized the mechanisms and fitness consequences of resource exchange, but have not been extended to functionally divergent partners. First, we merge these approaches using graphical models to define the multiple mutualist effects (MMEs) that occur when a focal species has multiple partner mutualists. This approach mirrors food web research that has been advanced by studies of multiple predator effects as well as by detailed investigations of modules nested within larger networks. Second, we define the pathways through which a focal mutualist and two or more partner species could interact, reviewing examples of MMEs that span a range from positive to negative fitness effects. Third, given the potential for nonadditivity demonstrated by the existing literature, we pose new hypotheses for species-interaction outcomes by examining factors such as the extent of overlap in rewards exchanged among partners and their resulting network topologies. Our synthesis illustrates how the consideration of MMEs can improve the ability to predict the outcomes of losses or gains of mutualisms from ecosystems.


Assuntos
Simbiose/fisiologia , Animais , Cadeia Alimentar , Modelos Biológicos , Especificidade da Espécie
19.
Ecology ; 95(5): 1308-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000762

RESUMO

Considerable research has examined the influence of herbivores on the maintenance of plant diversity, but fewer studies have examined the reciprocal effect of plant diversity on the animals that use the plant community for food and shelter, particularly in marine systems. Several mechanisms could underlie such effects. Animal diversity and abundance could be increased by complementary use of different plants by different animals, or by an indirect effect of plant diversity on plant production that results in more total plant biomass in high plant-diversity communities. Alternatively, plant species identity could play a dominant role leading to sampling effects or no effect of diversity at all. We conducted a six-year field manipulation of the richness of rocky shore seaweeds in northern California and measured the effects of algal richness and identity on the invertebrate community, from meiofauna to macrofauna. We found that diverse algal communities hosted more species of both large and small invertebrates than the average algal monoculture but that the mechanisms underlying this pattern differed substantially for organisms of different size. More species of macrofauna occurred in the polycultures than in any of the monocultures, likely due to the greater total cover of algae produced in polycultures. Rare and common macrofaunal taxa responded to host plant species richness in opposite ways, with more occurrences of rare taxa and lower abundance of very common taxa in the polycultures. In contrast, meiofaunal richness in polycultures was no different than that of monocultures of finely branched species, leading to strong effects of algal identity. Our findings are similar to those from terrestrial systems in that the effects of plant diversity we observed were most related to the greater amount of habitat in polycultures as a result of overyielding in algal biomass. However, our findings differ from those in terrestrial systems in that the primary mechanisms for both richness and identity effects appear related to the value of plants as shelter from harsh abiotic conditions or predation rather than food, and in that animal body size altered the mechanisms underlying diversity effects.


Assuntos
Biodiversidade , Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Plantas/classificação , Animais , Tamanho Corporal , California , Oceano Pacífico , Estações do Ano
20.
J Anim Ecol ; 83(1): 296-305, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24350679

RESUMO

Biotic resistance is the ability of communities to inhibit the establishment, spread or impact of novel species. However, the interactions that underlie biotic resistance depend heavily on the contexts in which species interact. Consequently, studies of biotic resistance that consider single processes, patches, species or life-history stages may provide an incomplete picture of the capacity for communities to resist invasion. Many organisms have multiphasic life cycles, where individuals can occupy distinct niches at different stages of the life history. Generally, studies of biotic resistance focus on interactions within a single life-history stage, and interactions at other life-history stages are overlooked. Here, we demonstrate that different mechanisms of biotic resistance occur across the life history and together limit the invasion success of an introduced marine invertebrate (Ciona intestinalis) in Northern California. We tested the role of interactions (competition and predation) with the resident community in limiting the abundance of Ciona through experiments conducted on fertilization, larval survival, settlement, early postsettlement survival, and the survival of juveniles and adults. Under some circumstances, Ciona became abundant in mid-successional stages and showed more rapid growth rates than a morphologically similar native species, Ascidia ceratodes. However, predators reduced Ciona abundance much more than that of Ascidia at several life stages. Furthermore, Ciona appeared to be a weaker competitor at the adult stage. Early life-history interactions with other sessile species at the fertilization, larval and recruit stages had modest to no effects on Ciona abundance. The presence of biotic resistance mechanisms acting at multiple life stages, and potentially under different conditions, suggests that different components of biotic resistance interact to enhance the resident community's resistance to invasion.


Assuntos
Adaptação Fisiológica/fisiologia , Ciona intestinalis/fisiologia , Ecossistema , Animais , Larva , Estágios do Ciclo de Vida , Modelos Biológicos , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA