Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 146(12): 8417-8424, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38499198

RESUMO

Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm-2) highlights the potential of these photocages in biology and medicine.


Assuntos
Fótons , Humanos , Miócitos Cardíacos
2.
Chemistry ; 30(28): e202400111, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470944

RESUMO

Regulation of pH plays an essential role in orchestrating the delicate cellular machinery responsible for life as we know it. Its abnormal values are indicative of aberrant cellular behavior and associated with pathologies including cancer progression or solid tumors. Here, we report a series of bent and linear aminobenzocoumarins decorated with different substituents. We investigate their photophysical properties and demonstrate that the probes display strong pH-responsive fluorescence "turn on" behavior in highly acidic environments, with enhancement up to 300-fold. In combination with their low cytotoxicity, this behavior enabled their application in bioimaging of acidic lysosomes in live human cells. We believe that these molecules serve as attractive lead structures for future rational design of novel biocompatible fluorescent pH probes.


Assuntos
Cumarínicos , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Cumarínicos/química , Lisossomos/metabolismo , Lisossomos/química , Células HeLa , Espectrometria de Fluorescência
3.
J Org Chem ; 87(7): 4750-4763, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35282677

RESUMO

Carbon monoxide (CO) is an endogenous signaling molecule that regulates diverse physiological processes. The therapeutic potential of CO is hampered by its intrinsic toxicity, and its administration poses a significant challenge. Photoactivatable CO-releasing molecules (photoCORMs) are an excellent tool to overcome the side effects of untargeted CO administration and provide precise spatial and temporal control over its release. Here, we studied the CO release mechanism of a small library of derivatives based on 3-hydroxy-2-phenyl-4H-benzo[g]chromen-4-one (flavonol), previously developed as an efficient photoCORM, by steady-state and femto/nanosecond transient absorption spectroscopies. The main objectives of the work were to explore in detail how to enhance the efficiency of CO photorelease from flavonols, bathochromically shift their absorption bands, control their acid-base properties and solubilities in aqueous solutions, and minimize primary or secondary photochemical side-reactions, such as self-photooxygenation. The best photoCORM performance was achieved by combining substituents, which simultaneously bathochromically shift the chromophore absorption spectrum, enhance the formation of the productive triplet state, and suppress the singlet oxygen production by shortening flavonol triplet-state lifetimes. In addition, the cell toxicity of selected flavonol compounds was analyzed using in vitro hepatic HepG2 cells.


Assuntos
Monóxido de Carbono , Flavonoides , Monóxido de Carbono/química , Análise Espectral
4.
European J Org Chem ; 2022(23)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38322783

RESUMO

Two new classes of near-infrared molecular probes were prepared and shown to exhibit "turn on" fluorescence when cleaved by the nitroreductase enzyme, a well-known biomarker of cell hypoxia. The fluorescent probes are heptamethine cyanine dyes with a central 4'-carboxylic ester group on the heptamethine chain that is converted by a self-immolative fragmentation mechanism to a 4'-caboxylate group that greatly enhances the fluorescence brightness. Each compound was prepared by ring opening of a Zincke salt. The chemical structures have either terminal benzoindolinenes or propargyloxy auxochromes, which provide favorable red-shifted absorption/emission wavelengths and a hyperchromic effect that enhances the photon output when excited by 808 nm light. A fluorescent probe with terminal propargyloxy-indolenines exhibited less self-aggregation and was rapidly activated by nitroreductase with large "turn on" fluorescence; thus, it is the preferred choice for translation towards in vivo applications.

5.
Chimia (Aarau) ; 76(9): 763-771, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-38069704

RESUMO

In this account, we provide an overview of the applications that arose from the recently developed synthetic methodology that delivers heptamethine cyanines (Cy7) substituted at the central chain. The ability to easily introduce and manipulate various substituents in different substitution patterns along the cyanine chain enabled rational tailoring of the photophysical and photochemical properties. Exercising this control over the structure-property relationship proved to have a substantial impact in the field of cyanine dyes and was swiftly harnessed in a number of emerging applications in distinct areas, including fluorescent probes, biosensors, dye-sensitized upconversion nanoparticles, phototruncation of cyanines and photocages. While this method unlocked a number of new avenues, many synthetic challenges remain to be conquered in order to fully capitalize on the potential of cyanines, and we provide a short perspective that summarizes them at the end of this manuscript.

6.
Angew Chem Int Ed Engl ; 61(33): e202204391, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35578980

RESUMO

Near-infrared light (NIR; 650-900 nm) offers unparalleled advantages as a biocompatible stimulus. The development of photocages that operate in this region represents a fundamental challenge due to the low energy of the excitation light. Herein, we repurpose cyanine dyes into photocages that are available on a multigram scale in three steps and efficiently release carboxylic acids in aqueous media upon irradiation with NIR light up to 820 nm. The photouncaging process is examined using several techniques, providing evidence that it proceeds via photooxidative pathway. We demonstrate the practical utility in live HeLa cells by delivery and release of the carboxylic acid cargo, that was otherwise not uptaken by cells in its free form. In combination with modularity of the cyanine scaffold, the realization of these accessible photocages will fully unleash the potential of the emerging field of NIR-photoactivation and facilitate its widespread adoption outside the photochemistry community.


Assuntos
Corantes , Quinolinas , Ácidos Carboxílicos , Corantes Fluorescentes , Células HeLa , Humanos , Raios Infravermelhos , Fotoquímica
7.
Chimia (Aarau) ; 75(10): 873-881, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34728015

RESUMO

We discuss the past decade of progress in the field of photoremovable protecting groups that allowed the development of photocages activatable by near-IR light and highlight the individual conceptual advancements that lead to general guidelines to design new such photoremovable protecting groups. We emphasize the importance of understanding the individual photochemical reaction mechanisms that was necessary to achieve this progress and provide an outlook of the subsequent steps to facilitate a swift translation of this research into clinical praxis. Since this issue of CHIMIA is dedicated to the late Prof. Thomas Bally, we decided to provide a personal perspective on the field to which he contributed himself. We tried to write this review with the general readership of CHIMIA in mind in a hope to pay a tribute to the extraordinary dedication and clarity with which Thomas Bally used to explain abstract chemical concepts to his students or colleagues. We are uncertain whether we matched such challenge but we believe that he would have liked such approach very much.


Assuntos
Luz , Humanos , Masculino
8.
Chemistry ; 26(58): 13184-13190, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32885885

RESUMO

Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light. In this work, a strategy to access such photoCORMs by fusing two CO-releasing flavonol moieties with a NIR-absorbing cyanine dye is presented. These hybrids liberate two molecules of CO in high chemical yields upon activation with NIR light up to 820 nm and exhibit excellent uncaging cross-sections, which surpass the state-of-the-art by two orders of magnitude. Furthermore, the biocompatibility and applicability of the system in vitro and in vivo are demonstrated, and a mechanism of CO release is proposed. It is hoped that this strategy will stimulate the discovery of new classes of photoCORMs and accelerate the translation of CO-based phototherapy into practice.

9.
J Org Chem ; 85(5): 3527-3537, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31977220

RESUMO

Carbon monoxide is a naturally occurring gasotransmitter combining inherent toxicity with a remarkable therapeutic potential and arduous administration. Photoactivatable carbon monoxide-releasing molecules (photoCORMs) are chemical agents that allow for precise spatial and temporal control over the CO release. In this work, we present a comprehensive mechanistic study of the photochemical CO release from 3-hydroxy-2-phenyl-4H-chromen-4-one, a π-extended 3-hydroxyflavone photoCORM, in methanol using steady-state and transient absorption spectroscopies and quantum chemical calculations. The multiplicity of the productive excited states and the role of oxygen (O2) in the CO production are emphasized, revealing a photoreaction dichotomy of the 3-hydroxyflavone acid and base forms. The utilization of three major orthogonal mechanistic pathways, all of which lead to the CO release, can fuel future endeavors to improve the CO release efficacy of 3-hydroxyflavone-based derivatives and refine their potential medical applications as photoCORMs.

10.
J Org Chem ; 85(15): 9776-9790, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697591

RESUMO

Heptamethine cyanines (Cy7) are fluorophores essential for modern bioimaging techniques and chemistry. Here, we systematically evaluated the photochemical and photophysical properties of a library of Cy7 derivatives containing diverse substituents in different positions of the heptamethine chain. A single substitution allows modulation of their absorption maxima in the range of 693-805 nm and photophysical properties, such as quantum yields of singlet-oxygen formation, decomposition, and fluorescence or affinity to singlet oxygen, within 2-3 orders of magnitude. The same substituent in different positions of the chain often exhibits distinctly contradictory effects, demonstrating that both the type and position of the substituent are pivotal for the design of Cy7-based applications. The combination of experimental results with quantum-chemical calculations provides insights into the structure-property relationship, the elucidation of which will accelerate the development of cyanines with properties tailored for specific applications, such as fluorescent probes and sensors, photouncaging, photodynamic therapy, or singlet-oxygen detection.

11.
J Am Chem Soc ; 141(17): 7155-7162, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017409

RESUMO

Cyanine dyes play an indispensable and central role in modern fluorescence-based biological techniques. Despite their importance and widespread use, the current synthesis methods of heptamethine chain modification are restricted to coupling reactions and nucleophilic substitution at the meso position in the chain. Herein, we report the direct transformation of Zincke salts to cyanine dyes under mild conditions, accompanied by the incorporation of a substituted pyridine residue into the heptamethine scaffold. This work represents the first general approach that allows the introduction of diverse substituents and different substitution patterns at the C3'-C5' positions of the chain. High yields, functional tolerance, versatility toward the condensation partners, and scalability make this method a powerful tool for accessing a new generation of cyanine derivatives.

12.
J Am Chem Soc ; 140(49): 17278-17289, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30458108

RESUMO

Recent advances in molecular design have displayed striking examples of dynamic chirality transfer between various elements of chirality, e.g., from central to either helical or axial chirality and vice versa. While considerable progress in atroposelective synthesis has been made, it is intriguing to design chiral molecular switches able to provide selective and dynamic control of axial chirality with an external stimulus to modulate stereochemical functions. Here, we report the synthesis and characterization of a photoresponsive bis(2-phenol)-substituted molecular switch 1. The unique design exhibits a dynamic hybrid central-helical-axial transfer of chirality. The change of preferential axial chirality in the biaryl motif is coupled to the reversible switching of helicity of the overcrowded alkene core, dictated by the fixed stereogenic center. The potential for dynamic control of axial chirality was demonstrated by using ( R)-1 as switchable catalyst to direct the stereochemical outcome of the catalytic enantioselective addition of diethylzinc to aromatic aldehydes, with successful reversal of enantioselectivity for several substrates.

13.
Chemistry ; 24(1): 81-84, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29154435

RESUMO

Artificial molecular motors hold great promise for application in responsive functional materials as well as to control the properties of biohybrid systems. Herein a strategy is reported to modulate the rotation of light-driven molecular motors. That is, the rotary speed of a molecular motor, functionalized with a biphenol moiety, could be decreased in situ by non-covalent substrate binding, as was established by 1 H NMR and UV/Vis spectroscopy. These findings constitute an important step in the development of multi-responsive molecular machinery.

14.
J Org Chem ; 83(18): 10835-10844, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30085660

RESUMO

Photosensitized cross-linking of N-acetyl derivatives of tryptophan and tyrosine by rose bengal in phosphate buffer saline was studied by steady-state absorption and emission spectroscopy, nanosecond transient absorption spectroscopy, and chemical analyses. These amino acids undergo cross-linking to form dimeric and higher oligomeric products under anoxic conditions with rose bengal as a sacrificial oxidant, whereas they react predominantly with singlet oxygen produced by rose bengal in aerated solutions. This investigation provides a comprehensive view into the first steps of rose bengal photosensitized cross-linking of these two amino acids. The results can be helpful for future applications of rose bengal and related dyes, such as photochemical tissue bonding or visible light photocatalysis.

15.
J Am Chem Soc ; 139(9): 3328-3331, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28218846

RESUMO

A straightforward synthetic route to arylazoindazoles via nucleophilic aromatic substitution is presented. Upon deprotonation of the NH group, a C6F5-substituted formazan undergoes facile cyclization as a result of intermolecular nucleophilic substitution (SNAr). This new class of azo photoswitches containing an indazole five-membered heterocycle shows photochemical isomerization with high fatigue resistance. In addition, the Z-isomers have long thermal half-lives in the dark of up to several days at room temperature. The fluorinated indazole group offers a handle for further functionalization and tuning of its properties, as it is shown to be susceptible to a subsequent, highly selective nucleophilic displacement reaction.

16.
J Am Chem Soc ; 139(28): 9650-9661, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628318

RESUMO

Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines based on light-driven rotary motion. Herein we demonstrate the thermal and photochemical rotational behavior of a series of third-generation light-driven molecular motors. The steric hindrance of the core unit exerted upon the rotors proved pivotal in controlling the speed of rotation, where a smaller size results in lower barriers. The presence of a pseudo-asymmetric carbon center provides the motor with unidirectionality. Tuning of the steric effects of the substituents at the bridgehead allows for the precise control of the direction of disrotary motion, illustrated by the design of two motors which show opposite rotation with respect to a methyl substituent. A third-generation molecular motor with the potential to be the fastest based on overcrowded alkenes to date was used to visualize the equal rate of rotation of both its rotor units. The autonomous rotational behavior perfectly followed the predicted model, setting the stage for more advanced motors for functional dynamic systems.

17.
Chemistry ; 23(27): 6643-6653, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28294431

RESUMO

A series of unprecedented second generation molecular motors featuring a quaternary stereogenic center substituted with a fluorine atom has been synthesized. It is demonstrated that a seemingly benign replacement of the stereogenic hydrogen for a fluorine atom, regarded as a common substituent in pharmacology, resulted in a dramatic change in the energetic profile of thermal helix inversion. The barrier for the thermal helix inversion was found to increase considerably (by 20-30 kJ mol-1 ), presumably due to destabilization of the transition state by increased steric hindrance when the fluorine atom is forced to pass over the lower half of the motor. This results in the activation barrier for the thermal helix inversion to be higher than the barrier for backward thermal E-Z isomerization, impairing the motor function. A fluorine-substituted motor capable of performing unidirectional rotation is successfully prepared when these limitations are considered in the design phase.

18.
Langmuir ; 33(9): 2306-2317, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28234488

RESUMO

We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.

19.
J Phys Chem A ; 121(10): 2138-2150, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28218530

RESUMO

Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state followed by thermal helix inversions. The internal rotation of a large molecular unit required in these steps is expected to be sensitive to both the viscosity of the medium and the volume of the rotating unit. In this work, we describe a study of motor motion in both ground and excited states as a function of the size of the rotating units. The excited state decay is ultrafast, highly non-single exponential, and is best described by a sum of three exponential relaxation components. The average excited state decay time observed for a series of motors with substituents of increasing volume was determined. While substitution does affect the lifetime, the size of the substituent has only a minor effect. The solvent polarity dependence is also slight, but there is a significant solvent viscosity effect. Increasing the viscosity has no effect on the fastest of the three decay components, but it does lengthen the two slower decay times, consistent with them being associated with motion along an intramolecular coordinate displacing a large solvent volume. However, these slower relaxation times are again not a function of the size of the substituent. We conclude that excited state decay arises from motion along a coordinate which does not necessarily require complete rotation of the substituents through the solvent, but is instead more localized in the core structure of the motor. The decay of the metastable state to the ground state through a helix inversion occurs 14 orders of magnitude more slowly than the excited state decay, and was measured as a function of substituent size, solvent viscosity and temperature. In this case neither substituent size nor solvent viscosity influences the rate, which is entirely determined by the activation barrier. This result is different to similar studies of an earlier generation of molecular motors, which suggests different microscopic mechanisms are in operation in the different generations. Finally, the rate of photochemical isomerization was studied for the series of motors, and those with the largest volume substituents showed the highest photochemical cross section.

20.
Angew Chem Int Ed Engl ; 56(1): 291-296, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27966814

RESUMO

Switching systems operating in a cooperative manner capable of converting light energy into mechanical motion are of great interest for optical devices, data storage, nanoscale energy converters and molecular sensing. Herein, photoswitchable monolayers were formed at the air-water interface from either a pure bis(thiaxanthylidene)-based photoswitchable amphiphile or from a mixture of the photoswitchable amphiphile with a conventional lipid dipalmitoylphosphatidylcholine (DPPC). Efficient photoisomerization of the anti-folded to syn-folded geometry of the amphiphile's central core induces changes in the surface pressure in either direction, depending on the initial molecular density. Additionally, the switching behavior can be regulated in the presence of DPPC, which influences the packing of the molecules, thereby controlling the transformation upon irradiation. Bis(thiaxanthylidene)-based photoswitchable monolayers provide a promising system to explore cooperativity and amplification of motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA