Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Amino Acids ; 54(7): 1041-1053, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419750

RESUMO

Vibrio natriegens is the fastest growing organism identified so far. The minimum doubling time of only 9.4 min, the ability to utilize over 60 different carbon sources and its non-pathogenic properties make it an interesting alternative to E. coli as a new production host for recombinant proteins. We investigated the ability of the engineered V. natriegens strain, Vmax™ Express, to incorporate the non-canonical amino acid (ncAA) p-azido-L-phenylalanine (AzF) into recombinant proteins for NMR applications. AzF was incorporated into enhanced yellow fluorescent protein (EYFP) and MlaC, an intermembrane transport protein, by stop codon suppression. AzF incorporation into EYFP resulted in an improved suppression efficiency (SE) of up to 35.5 ± 0.8% and a protein titer of 26.7 ± 0.7 mg/L. The expression levels of MlaC-AzF even exceeded those of E. coli BL21 cells. For the recording of 1H-15N and 19F NMR spectra, EYFP-AzF was expressed and isotopically labeled in minimal medium and the newly introduced azido-group was used as coupling site for NMR sensitive 19F-tags. Our findings show that Vmax is a flexible expression host, suitable for the incorporation of ncAAs in recombinant proteins with the potential to surpass protein yields of E. coli. The presented method suggests the implementation of V. natriegens for expression of isotopically labeled proteins containing ncAAs, which can be chemically modified for the application in protein-observed 19F-NMR.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio
2.
Sci Rep ; 14(1): 10039, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693166

RESUMO

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trypanosoma cruzi , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Ligação Proteica
3.
Eur J Pharm Biopharm ; 133: 176-187, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291964

RESUMO

Inflammation processes are associated with significant decreases in tissue or lysosomal pH from 7.4 to 4, a fact that argues for the application of pH-responsive drug delivery systems. However, for their design and optimization a full understanding of the release mechanism is crucial. In this study we investigated the pH-depending drug release mechanism and the influence of silk fibroin (SF) concentration and SF degradation degree of human serum albumin (HSA)-SF nanocapsules. Sonochemically produced nanocapsules were investigated regarding particle size, colloidal stability, protein encapsulation, thermal stability and drug loading properties. Particles of the monodisperse phase showed average hydrodynamic radii between 438 and 888 nm as measured by DLS and AFM and a zeta potential of -11.12 ±â€¯3.27 mV. Together with DSC results this indicated the successful production of stable nanocapsules. ATR-FTIR analysis demonstrated that SF had a positive effect on particle formation and stability due to induced beta-sheet formation and enhanced crosslinking. The pH-responsive release was found to depend on the SF concentration. In in-vitro release studies, HSA-SF nanocapsules composed of 50% SF showed an increased pH-responsive release for all tested model substances (Rhodamine B, Crystal Violet and Evans Blue) and methotrexate at the lowered pH of 4.5 to pH 5.4, while HSA capsules without SF did not show any pH-responsive drug release. Mechanistic studies using confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS) analyses showed that increases in particle porosity and decreases in particle densities are directly linked to pH-responsive release properties. Therefore, the pH-responsive release mechanism was identified as diffusion controlled in a novel and unique approach by linking scattering results with in-vitro studies. Finally, cytotoxicity studies using the human monocytic THP-1 cell line indicated non-toxic behavior of the drug loaded nanocapsules when applied in a concentration of 62.5 µg mL-1. Based on the obtained release properties of HSA-SF nanocapsules formulations and the results of in-vitro MTT assays, formulations containing 50% SF showed the highest requirements arguing for future in vivo experiments and application in the treatment of inflammatory diseases.


Assuntos
Fibroínas/química , Nanocápsulas/química , Albumina Sérica Humana/química , Seda/química , Difusão , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Azul Evans/química , Violeta Genciana/química , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Rodaminas/química , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA