Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 492: 59-70, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179879

RESUMO

The IRE1α-XBP1s signaling branch of the unfolded protein response is a well-characterized survival pathway that allows cells to adapt to and resolve endoplasmic reticulum stress. Recent data has broadened our understanding of IRE1α-XBP1s signaling beyond a stress response and revealed a physiological mechanism required for the differentiation and maturation of a wide variety of cell types. Here we provide evidence that the IRE1α-XBP1s signaling pathway is required for the proliferation and maturation of basal keratinocytes in the mouse tongue and esophageal epithelium. Mice with conditional targeted deletion of either Ire1α or Xbp1 in keratin 14 expressing basal keratinocytes displayed severe thinning of the lingual and esophageal mucosa that rendered them unable to eat. In IRE1α null epithelium harvested at an earlier timepoint, genes regulating cell proliferation, cell-cell adhesion, and keratinization were significantly downregulated; indirect immunofluorescence revealed fewer proliferating basal keratinocytes, downregulation of E-cadherin, and thinning of the loricrin-positive granular and cornified layers. The number of Tp63-positive basal keratinocytes was reduced in the absence of IRE1α, and expression of the Wnt pathway transcription factor LEF1, which is required for the proliferation of lingual transit amplifying cells, was also significantly downregulated at the transcript and protein level. Together these results reveal an essential role for IRE1α-XBP1s in the maintenance of the stratified squamous epithelial tissue of the tongue and esophagus.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , Estresse do Retículo Endoplasmático/genética , Esôfago , Língua/metabolismo
2.
Genes Dev ; 26(19): 2154-68, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23028142

RESUMO

Extrapituitary prolactin (Prl) is produced in humans and rodents; however, little is known about its in vivo regulation or physiological function. We now report that autocrine prolactin is required for terminal mammary epithelial differentiation during pregnancy and that its production is regulated by the Pten-PI3K-Akt pathway. Conditional activation of the PI3K-Akt pathway in the mammary glands of virgin mice by either Akt1 expression or Pten deletion rapidly induced terminal mammary epithelial differentiation accompanied by the synthesis of milk despite the absence of lobuloalveolar development. Surprisingly, we found that mammary differentiation was due to the PI3K-Akt-dependent synthesis and secretion of autocrine prolactin and downstream activation of the prolactin receptor (Prlr)-Jak-Stat5 pathway. Consistent with this, Akt-induced mammary differentiation was abrogated in Prl(-/-), Prlr(-/-), and Stat5(-/-) mice. Furthermore, cells treated with conditioned medium from mammary glands in which Akt had been activated underwent rapid Stat5 phosphorylation in a manner that was blocked by inhibition of Jak2, treatment with an anti-Prl antibody, or deletion of the prolactin gene. Demonstrating a physiological requirement for autocrine prolactin, mammary glands from lactation-defective Akt1(-/-);Akt2(+/-) mice failed to express autocrine prolactin or activate Stat5 during late pregnancy despite normal levels of circulating serum prolactin and pituitary prolactin production. Our findings reveal that PI3K-Akt pathway activation is necessary and sufficient to induce autocrine prolactin production in the mammary gland, Stat5 activation, and terminal mammary epithelial differentiation, even in the absence of the normal developmental program that prepares the mammary gland for lactation. Together, these findings identify a function for autocrine prolactin during normal development and demonstrate its endogenous regulation by the PI3K-Akt pathway.


Assuntos
Regulação da Expressão Gênica , Lactação/fisiologia , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Comunicação Autócrina/fisiologia , Diferenciação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Deleção de Genes , Lactação/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Proteínas do Leite/metabolismo , PTEN Fosfo-Hidrolase/genética , Gravidez , Prolactina/genética , Proteínas Proto-Oncogênicas c-akt/genética
3.
Exp Dermatol ; 28(7): 867-871, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107992

RESUMO

Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disease affecting the pilosebaceous units in the axilla, groin and buttocks. While the pathogenesis of HS is not clear, mechanical stress exacerbates HS. In this study, we aimed to determine whether intracellular adhesive junctions may be aberrant in HS patient skin. Strikingly, we observed loss of E-cadherin and p120ctn protein expression, two key adherens junction proteins, in ~85% of HS severe skin lesions. Moreover, loss of protein expression was apparent in non-lesional skin from HS patients and the degree of loss positively correlated with HS Hurley Stage of disease. E-cadherin expression was unaltered in other inflammatory skin conditions including chronic wound epithelium, atopic dermatitis, and acne vulgaris compared with healthy skin suggesting that its loss may be uniquely relevant to HS pathogenesis. A complete loss of α-catenin, ß-catenin and ZO-1 was not observed; however, some cytoplasmic staining of the catenins was noted in HS epithelium. We also demonstrated diminished desmosome size in HS lesional skin. Overall, our data suggested that loss of adherens junction proteins and diminished desmosome size in HS skin contributes to the skin's inability to withstand mechanical stress and provides rationale as to why mechanical stress exacerbates HS symptoms.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Regulação da Expressão Gênica , Hidradenite Supurativa/metabolismo , Junções Aderentes , Dermatite Atópica/metabolismo , Humanos , Pele/metabolismo , Estresse Mecânico , Proteína da Zônula de Oclusão-1/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , delta Catenina
4.
Am J Pathol ; 185(1): 240-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529795

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a poor prognosis due to its highly invasive and metastatic potential. The molecular pathogenesis underlying the invasive mechanism of ESCC is not well known because of the lack of existing models to study this disease. p120-Catenin (p120ctn) and the epidermal growth factor receptor (EGFR) have each been implicated in several cancers, including ESCC. p120ctn is down-regulated in 60% of ESCC tumors, whereas EGFR is the most commonly overexpressed oncogene in ESCC. For these reasons, we investigated the cooperation between p120ctn and EGFR and its effect on ESCC invasion. We show that p120ctn down-regulation is commonly associated with EGFR overexpression. By using a three-dimensional culture system, we demonstrate that the inverse relationship between p120ctn and EGFR has biological implications. Specifically, p120ctn down-regulation coupled with EGFR overexpression in human esophageal keratinocytes (EPC1-PE) was required to promote invasion. Morphological comparison of EPC1-PE cells grown in three-dimensional culture and human ESCC revealed identical features, including significantly increased cellularity, nuclear grade, and proliferation. Molecular characteristics were measured by keratin expression patterns, which were nearly identical between EPC1-PE cells in three-dimensional culture and ESCC samples. Altogether, our analyses have demonstrated that p120ctn down-regulation and EGFR overexpression are able to mimic human ESCC in a relevant three-dimensional culture model.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Cateninas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Antígenos CD , Caderinas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Epitélio/metabolismo , Epitélio/patologia , Carcinoma de Células Escamosas do Esôfago , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Queratinas/metabolismo , Invasividade Neoplásica , delta Catenina
5.
Nat Cell Biol ; 9(5): 493-505, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17450133

RESUMO

Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - similar to those found in tumours bearing endogenous Kras2 mutations - induce cellular senescence that is Ink4a-Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53-Ink4a-Arf-dependent senescence checkpoints.


Assuntos
Transformação Celular Neoplásica/metabolismo , Senescência Celular , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Hiperplasia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Mutação , Proteína Oncogênica p21(ras)/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Transporte Proteico , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
6.
Adv Healthc Mater ; 13(10): e2303593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38215360

RESUMO

Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.


Assuntos
Neoplasias Esofágicas , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Animais , Camundongos , Humanos , Camundongos Nus , Nanopartículas/química , MicroRNAs/genética , Nanopartículas Metálicas/química , Neoplasias Esofágicas/tratamento farmacológico , Ouro/química , Linhagem Celular Tumoral
7.
Cell Metab ; 4(6): 475-90, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17141631

RESUMO

The metabolic demands and synthetic capacity of the lactating mammary gland exceed that of any other tissue, thereby providing a useful paradigm for understanding the developmental regulation of cellular metabolism. By evaluating mice bearing targeted deletions in Akt1 or Akt2, we demonstrate that Akt1 is specifically required for lactating mice to synthesize sufficient quantities of milk to support their offspring. Whereas cellular proliferation, differentiation, and apoptosis are unaffected, loss of Akt1 disrupts the coordinate regulation of metabolic pathways that normally occurs at the onset of lactation. This results in a failure to upregulate glucose uptake, Glut1 surface localization, lipid synthesis, and multiple lipogenic enzymes, as well as a failure to downregulate lipid catabolic enzymes. These findings demonstrate that Akt1 is required in an isoform-specific manner for orchestrating many of the developmental changes in cellular metabolism that occur at the onset of lactation and establish a role for Akt1 in glucose metabolism.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Lactação/metabolismo , Lipídeos/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Isoenzimas/deficiência , Isoenzimas/metabolismo , Lactação/genética , Camundongos , Camundongos Knockout , Leite/metabolismo , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-akt/deficiência
8.
J Clin Invest ; 118(12): 3860-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033657

RESUMO

The esophageal epithelium is a prototypical stratified squamous epithelium that exhibits an exquisite equilibrium between proliferation and differentiation. After basal cells proliferate, they migrate outward toward the luminal surface, undergo differentiation, and eventually slough due to apoptosis. The identification and characterization of stem cells responsible for the maintenance of the esophageal epithelium remains elusive. Here, we employed Hoechst dye extrusion and BrdU label-retaining assays to identify in mice a potential esophageal stem cell population that localizes to the basal cell compartment. The self-renewing capacity of this population was characterized using a clonogenic assay and a 3D organotypic culture model. The putative esophageal stem cells were also capable of epithelial reconstitution in vivo in direct esophageal epithelial injury models. In both the 3D organotypic culture and direct mucosal injury models, the putative stem cells gave rise to undifferentiated and differentiated cells. These studies therefore provide a basis for understanding the regenerative capacity and biology of the esophageal epithelium when it is faced with injurious insults.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Células Epiteliais/citologia , Esôfago/citologia , Células-Tronco/citologia , Animais , Bromodesoxiuridina/química , Movimento Celular/fisiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Epitélio/metabolismo , Doenças do Esôfago/metabolismo , Esôfago/metabolismo , Corantes Fluorescentes/química , Camundongos , Células-Tronco/metabolismo
9.
PLoS One ; 16(11): e0259998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784403

RESUMO

One of the major risk factors for head and neck squamous cell carcinoma (HNSCC) is tobacco smoke exposure, but the mechanisms that can account for disease development remain to be fully defined. Utilizing our HNSCC mouse model, we analyzed oral squamous cell carcinomas (OSCC) induced by the active metabolite of a common smoke constituent, dibenzo[a,l]pyrene diol-epoxide (DBPDE). Analyzing protein expression by either immunofluorescence or immunohistochemistry, we identified biologic processes that are dysregulated in premalignant and invasive cancer lesions induced by DBPDE. Interestingly, p120ctn expression is downregulated in both stages of the disease. In addition to decreased p120ctn expression, there was also increased proliferation (as measured by Ki67), inflammation (as measured by NFkB (p65) expression), neovascularization (as measured by CD31) and recruitment of Ly6G-positive immune cells as well as strong EGFR expression. We also examined the effect of the chemopreventive agent black raspberry (BRB) on p120ctn and EGFR protein expression in DBPDE treated mice. p120ctn, but not EGFR, protein expression increased in mice treated with BRB. Our results suggest that modulation of p120ctn may, in part, account for the mechanism by which BRB inhibits DBPDE induced OSCC in mice.


Assuntos
Cateninas/metabolismo , Compostos de Epóxi/efeitos adversos , Neoplasias Bucais/dietoterapia , Compostos Fitoquímicos/administração & dosagem , Rubus/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/dietoterapia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Compostos de Epóxi/química , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Compostos Fitoquímicos/farmacologia , Pirenos/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , delta Catenina
10.
Sci Rep ; 11(1): 19022, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561473

RESUMO

Phosphatidylinositol glycan anchor biosynthesis class N (PIGN) has been linked to the suppression of chromosomal instability. The spindle assembly checkpoint complex is responsible for proper chromosome segregation during mitosis to prevent chromosomal instability. In this study, the novel role of PIGN as a regulator of the spindle assembly checkpoint was unveiled in leukemic patient cells and cell lines. Transient downregulation or ablation of PIGN resulted in impaired mitotic checkpoint activation due to the dysregulated expression of spindle assembly checkpoint-related proteins including MAD1, MAD2, BUBR1, and MPS1. Moreover, ectopic overexpression of PIGN restored the expression of MAD2. PIGN regulated the spindle assembly checkpoint by forming a complex with the spindle assembly checkpoint proteins MAD1, MAD2, and the mitotic kinase MPS1. Thus, PIGN could play a vital role in the spindle assembly checkpoint to suppress chromosomal instability associated with leukemic transformation and progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica/genética , Leucemia/patologia , Fosfotransferases/fisiologia , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Progressão da Doença , Expressão Gênica , Células HL-60 , Humanos , Células K562 , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
11.
Chem Biol Interact ; 333: 109321, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33186600

RESUMO

HPV infections in the oral cavity that progress to cancer are on the increase in the USA. Model systems to study co-factors for progression of these infections are lacking as HPVs are species-restricted and cannot grow in preclinical animal models. We have recently developed a mouse papillomavirus (MmuPV1) oral mucosal infection model that provides opportunities to test, for the first time, the hypothesis that tobacco carcinogens are co-factors that can impact the progression of oral papillomas to squamous cell carcinoma (SCC). Four cohorts of mice per sex were included: (1) infected with MmuPV1 and treated orally with DMSO-saline; (2) infected with MmuPV1 and treated orally with the tobacco carcinogen, dibenzo[def,p]chrysene (DBP); (3) uninfected and treated orally with DMSO-saline, and (4) uninfected and treated orally with DBP. Oral swabs were collected monthly for subsequent assessment of viral load. Oral tissues were collected for in situ viral DNA/RNA detection, viral protein staining, and pathological assessment for hyperplasia, papillomas and SCC at study termination. We observed increased rates of SCC in oral tissue infected with MmuPV1 and treated with DBP when compared to mice treated with DBP or virus individually, each of which showed minimal disease. Virally-infected epithelium showed strong levels of viral DNA/RNA and viral protein E4/L1 staining. In contrast, areas of SCC showed reduced viral DNA staining indicative of lower viral copy per nucleus but strong RNA signals. Several host markers (p120 ctn, p53, S100A9) were also examined in the mouse oral tissues; of particular significance, p120 ctn discriminated normal un-infected epithelium from SCC or papilloma epithelium. In summary, we have confirmed that our infection model is an excellent platform to assess the impact of co-factors including tobacco carcinogens for oral PV cancerous progression. Our findings can assist in the design of novel prevention/treatment strategies for HPV positive vs. HPV negative disease.


Assuntos
Crisenos/toxicidade , Progressão da Doença , Poluentes Ambientais/toxicidade , Neoplasias Bucais/patologia , Nicotiana/efeitos adversos , Papillomaviridae/fisiologia , Fumaça/efeitos adversos , Animais , Carcinogênese/efeitos dos fármacos , Feminino , Genoma Viral/genética , Masculino , Camundongos , Neoplasias Bucais/virologia , Papillomaviridae/genética , Caracteres Sexuais , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
12.
Breast Cancer Res ; 12(5): R72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20849614

RESUMO

INTRODUCTION: The Akt pathway plays a central role in regulating cell survival, proliferation and metabolism, and is one of the most commonly activated pathways in human cancer. A role for Akt in epithelial differentiation, however, has not been established. We previously reported that mice lacking Akt1, but not Akt2, exhibit a pronounced metabolic defect during late pregnancy and lactation that results from a failure to upregulate Glut1 as well as several lipid synthetic enzymes. Despite this metabolic defect, however, both Akt1-deficient and Akt2-deficient mice exhibit normal mammary epithelial differentiation and Stat5 activation. METHODS: In light of the overlapping functions of Akt family members, we considered the possibility that Akt may play an essential role in regulating mammary epithelial development that is not evident in Akt1-deficient mice due to compensation by other Akt isoforms. To address this possibility, we interbred mice bearing targeted deletions in Akt1 and Akt2 and determined the effect on mammary differentiation during pregnancy and lactation. RESULTS: Deletion of one allele of Akt2 in Akt1-deficient mice resulted in a severe defect in Stat5 activation during late pregnancy that was accompanied by a global failure of terminal mammary epithelial cell differentiation, as manifested by the near-complete loss in production of the three principal components of milk: lactose, lipid, and milk proteins. This defect was due, in part, to a failure of pregnant Akt1(-/-);Akt2(+/-) mice to upregulate the positive regulator of Prlr-Jak-Stat5 signaling, Id2, or to downregulate the negative regulators of Prlr-Jak-Stat5 signaling, caveolin-1 and Socs2. CONCLUSIONS: Our findings demonstrate an unexpected requirement for Akt in Prlr-Jak-Stat5 signaling and establish Akt as an essential central regulator of mammary epithelial differentiation and lactation.


Assuntos
Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Janus Quinases/metabolismo , Lactação , Camundongos , Camundongos Knockout , Proteínas do Leite/biossíntese , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
13.
Biochem Soc Trans ; 38(2): 321-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298176

RESUMO

Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.


Assuntos
Esôfago de Barrett/patologia , Modelos Teóricos , Animais , Esôfago de Barrett/genética , Técnicas de Cultura de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Modelos Biológicos , Fenótipo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia
14.
Sci Rep ; 10(1): 18829, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139779

RESUMO

Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.


Assuntos
Cateninas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Cateninas/genética , Linhagem Celular , Progressão da Doença , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Expressão Gênica , Humanos , NF-kappa B/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética , delta Catenina
15.
PLoS One ; 15(10): e0241299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112928

RESUMO

Epidermal growth factor receptor (EGFR) plays a vital role in cell division and survival signaling pathways. EGFR is activated in nearly every cancer type, and its high expression in tumors is correlated with poor patient outcome. Altogether, EGFR is a prime candidate as a therapeutic target. While targeted EGFR therapy is initially effective in 75% of patients, a majority of patients relapse within the first year due to poorly understood mechanisms of resistance. p120-catenin (p120ctn) has recently been implicated as a biomarker for EGFR therapy. In previous studies, we demonstrated that p120ctn is a tumor suppressor and its loss is capable of inducing cancer. Furthermore, p120ctn down-regulation synergizes with EGFR overexpression to cause a highly invasive cell phenotype. The purpose of this present study was to investigate whether p120ctn down-regulation induced EGFR therapeutic resistance. Using human esophageal keratinocytes, we have found that EGFR-targeting compounds are toxic to cells overexpressing EGFR. Interestingly, these therapies do not cause toxicity in cells with EGFR overexpression and decreased p120ctn expression. These data suggest that decreased p120ctn causes resistance to EGFR therapy. We believe these findings are of utmost importance, as there is an unmet need to discover mechanisms of EGFR resistance.


Assuntos
Cateninas/deficiência , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Terapia de Alvo Molecular , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Apoptose/efeitos dos fármacos , Cateninas/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Esôfago/patologia , Gefitinibe/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento , delta Catenina
16.
Cancer Prev Res (Phila) ; 13(8): 649-660, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434808

RESUMO

Head and neck squamous cell carcinoma (HNSCC) was the 7th most common malignancy worldwide in 2018 and despite therapeutic advances, the overall survival rate for oral squamous cell carcinoma (OSCC; ∼50%) has remained unchanged for decades. The most common types are OSCC and oropharyngeal squamous cell carcinoma (OPSCC, survival rate ∼85%). Tobacco smoking is a major risk factor of HNSCC. In the developed world, the incidence of OSCC is declining as a result of tobacco cessation programs. However, OPSCC, which is also linked to human papillomavirus (HPV) infection, is on the rise and now ranks as the most common HPV-related cancer. The current state of knowledge indicates that HPV-associated disease differs substantially from other types of HNSCC and distinct biological differences between HPV-positive and HPV-negative HNSCC have been identified. Although risk factors have been extensively discussed in the literature, there are multiple clinically relevant questions that remain unanswered and even unexplored. Moreover, existing approaches (e.g., tobacco cessation, vaccination, and chemoprevention) to manage and control this disease remain a challenge. Thus, in this review, we discuss potential future basic research that can assist in a better understanding of disease pathogenesis which may lead to novel and more effective preventive strategies for OSCC and OPSCC.


Assuntos
Neoplasias Bucais/prevenção & controle , Neoplasias Orofaríngeas/prevenção & controle , Infecções por Papillomavirus/prevenção & controle , Carcinoma de Células Escamosas de Cabeça e Pescoço/prevenção & controle , Alphapapillomavirus/imunologia , Animais , Modelos Animais de Doenças , Humanos , Incidência , Vacinação em Massa/organização & administração , Camundongos , Microbiota/imunologia , Boca/microbiologia , Boca/patologia , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/patologia , Neoplasias Bucais/virologia , Neoplasias Orofaríngeas/epidemiologia , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Fumar Tabaco/epidemiologia , Abandono do Uso de Tabaco
17.
Oncotarget ; 9(13): 11180-11196, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541406

RESUMO

Four out of five patients diagnosed with esophageal squamous cell carcinoma (ESCC) will die within five years. This is primarily a result of the aggressive invasive potential of the disease. Our research is focused on the interplay between tumor suppressors and oncogenes in the invasive process. Specifically, EGFR and p120-catenin (p120ctn) are commonly dysregulated genes that are indicative of poor prognosis in ESCC. In a previous study we demonstrated that in our 3D organotypic culture model, only when EGFR overexpression is combined with p120ctn inactivation do the cells transform and invade - as opposed to either event alone. The purpose of this present study was to identify the components of the molecular pathways downstream of p120ctn and EGFR that lead to invasion. Using both human esophageal keratinocytes and human ESCC cells, we have identified NFkB as a central regulator of the invasive process downstream of p120ctn down-regulation and EGFR overexpression. Interestingly, we found that NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation than with either EGFR or p120ctn alone. Inhibition of this NFkB hyperactivation results in complete loss of invasion, suggesting that NFkB signaling is necessary for invasion in this aggressive cell type. Furthermore, we have identified RhoA and Rho-kinase as upstream regulators of NFkB in this process. We believe the cooperation of p120ctn down-regulation and EGFR overexpression is not only important in the aggressive mechanisms of ESCC but could be broadly applicable to many other cancer types in which p120ctn and EGFR are involved.

18.
Cancer Biol Ther ; 6(4): 534-40, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17457048

RESUMO

Insulin-like growth factor binding protein (IGFBP)-3 exerts either proapoptotic or growth stimulatory effects depending upon the cellular context. IGFBP-3 is overexpressed frequently in esophageal cancer. Yet, the role of IGFBP-3 in esophageal tumor biology remains elusive. To delineate the functional consequences of IGFBP-3 overexpression, we stably transduced Ha-Ras(V12)-transformed human esophageal cells with either wild-type or mutant IGFBP-3, the latter incapable of binding Insulin-like growth factor (IGFs) as a result of substitution of amino-terminal Ile56, Leu80, and Leu81 residues with Glycine residues. Wild-type, but not mutant, IGFBP-3 prevented IGF-1 from activating the IGF-1 receptor and AKT, and suppressed anchorage-independent cell growth. When xenografted in nude mice, in vivo bioluminescence imaging demonstrated that wild-type, but not mutant IGFBP-3, abrogated tumor formation by the Ras-transformed cells with concurrent induction of apoptosis, implying a prosurvival effect of IGF in cancer cell adaptation to the microenvironment. Moreover, there was more aggressive tumor growth by mutant IGFBP-3 overexpressing cells than control cell tumors, without detectable caspase-3 cleavage in tumor tissues, indicating an IGF-independent growth stimulatory effect of mutant IGFBP-3. In aggregate, these data suggest that IGFBP-3 contributes to esophageal tumor development and progression through IGF-dependent and independent mechanisms.


Assuntos
Neoplasias Esofágicas/patologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo
19.
Mol Cancer Res ; 15(10): 1398-1409, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28637905

RESUMO

Despite recent improvements in treatment for head and neck squamous cell carcinoma (HNSCC), half of all patients with a regional or advanced disease will die within 5 years from diagnosis. Therefore, identification of mechanisms driving the aggressive behavior of HNSCC is of utmost importance. Because p120-catenin (CTNND1/P120CTN) downregulation and PIK3CA mutations are commonly found in HNSCC, the objective of this study was to identify their impact on fundamental processes of metastasis, specifically, migration and invasion. Furthermore, this study aimed to identify the key effector proteins regulated by P120CTN downregulation and PIK3CA mutations. Studies using oral keratinocytes demonstrated that P120CTN downregulation and PIK3CA mutations increased migration and invasion. In addition, P120CTN downregulation and PIK3CA mutations resulted in elevated matrix metallopeptidase 1 (MMP1) levels. Inhibition of MMP1 resulted in decreased invasion, suggesting that MMP1 plays a critical role in HNSCC invasion. Moreover, analysis of HNSCC patient specimens from The Cancer Genome Atlas confirmed these findings. Tumors with low P120CTN and PI3K pathway mutations have higher levels of MMP1 compared to tumors with high P120CTN and no PI3K pathway mutations. In conclusion, this study demonstrates that P120CTN downregulation and PIK3CA mutations promote MMP1-driven invasion, providing a potential novel target for limiting metastasis in HNSCC.Implications: Because of its role in invasion, MMP1 represents a novel, potential target for limiting metastasis in a subset of HNSCCs with P120CTN downregulation and PIK3CA mutations. Mol Cancer Res; 15(10); 1398-409. ©2017 AACR.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Cateninas/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação para Baixo , Neoplasias de Cabeça e Pescoço/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Mutação , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço , delta Catenina
20.
Artigo em Inglês | MEDLINE | ID: mdl-26845434

RESUMO

Esophageal squamous cell carcinoma (ESCC), which is the most common subtype of esophageal cancers, is the sixth leading cause of cancer death worldwide with a five-year survival rate of 19%. Identification of efficient biomarkers for early detection and better understanding of the molecular mechanisms of ESCC may offer reduced mortality. However, proper biomarkers for clinical diagnosis and prognosis have not been defined yet. In the presented study, we employed a systematic and integrative 'omics' strategy to reconstruct networks of transcriptional regulation and protein-protein interaction to identify novel biomarkers, potential molecular targets, and mechanisms of transcriptional control in ESCC. Towards this end, we revealed 30 down-regulated and 21 up-regulated genes as ESCC specific biomarkers since these were differentially expressed between 91 ESCC tumor samples compared to normal tissues in five different datasets. We report the association of ACPP, C2orf54, DYNLT3, ENDOU, FMO2, and KANK1 (down-regulated genes) and COL10A1, FNDC3B, HOMER3, MARCKSL1, and RFC4 (up-regulated genes) to ESCC for the first time. Further, the ESCC driven molecular pathways were also constructed to elucidate the molecular mechanism of the disease; specifically several metabolic pathways were down-regulated while the signaling pathways were up-regulated. Additionally, reporter metabolites for ESCC were analyzed and metabolic dysfunction was ascertained in arachidonic acid metabolism and steroid hormone biosynthesis pathways. The multi-omics network strategy presented here may enable discovery of novel biomarkers and targets for personalized medicine in ESCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA