Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(11): 6023-6034, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132200

RESUMO

Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.


Assuntos
Cerebelo/patologia , Clorzoxazona/administração & dosagem , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Mitocôndrias/patologia , Degenerações Espinocerebelares/genética , Adolescente , Animais , Animais Recém-Nascidos , Linhagem Celular , Cerebelo/citologia , Análise Mutacional de DNA , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mutação com Perda de Função , Camundongos , Oócitos , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/tratamento farmacológico , Degenerações Espinocerebelares/patologia , Transfecção , Sequenciamento do Exoma , Xenopus
2.
PLoS Genet ; 7(7): e1002174, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779179

RESUMO

The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Endogamia , Recombinação Genética/genética , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Feminino , Rearranjo Gênico/genética , Variação Genética , Genoma/genética , Genótipo , Desequilíbrio de Ligação/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
3.
BMC Genomics ; 11: 236, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20385026

RESUMO

BACKGROUND: The nematode C. briggsae serves as a useful model organism for comparative analysis of developmental and behavioral processes. The amenability of C. briggsae to genetic manipulations and the availability of its genome sequence have prompted researchers to study evolutionary changes in gene function and signaling pathways. These studies rely on the availability of forward genetic tools such as mutants and mapping markers. RESULTS: We have computationally identified more than 30,000 polymorphisms (SNPs and indels) in C. briggsae strains AF16 and HK104. These include 1,363 SNPs that change restriction enzyme recognition sites (snip-SNPs) and 638 indels that range between 7 bp and 2 kb. We established bulk segregant and single animal-based PCR assay conditions and used these to test 107 polymorphisms. A total of 75 polymorphisms, consisting of 14 snip-SNPs and 61 indels, were experimentally confirmed with an overall success rate of 83%. The utility of polymorphisms in genetic studies was demonstrated by successful mapping of 12 mutations, including 5 that were localized to sub-chromosomal regions. Our mapping experiments have also revealed one case of a misassembled contig on chromosome 3. CONCLUSIONS: We report a comprehensive set of polymorphisms in C. briggsae wild-type strains and demonstrate their use in mapping mutations. We also show that molecular markers can be useful tools to improve the C. briggsae genome sequence assembly. Our polymorphism resource promises to accelerate genetic and functional studies of C. briggsae genes.


Assuntos
Caenorhabditis/genética , Mapeamento Cromossômico/métodos , Animais , Mutação INDEL , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA