Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 59(45): 4421-4428, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147967

RESUMO

Lipid transfer from lipoprotein particles to cells is essential for lipid homeostasis. High-density lipoprotein (HDL) particles are mainly captured by cell membrane-associated scavenger receptor class B type 1 (SR-B1) from the bloodstream, while low-density and very-low-density lipoprotein (LDL and VLDL, respectively) particles are mostly taken up by receptor-mediated endocytosis. However, the role of the target lipid membrane itself in the transfer process has been largely neglected so far. Here, we study how lipoprotein particles (HDL, LDL, and VLDL) interact with synthetic lipid bilayers and cell-derived membranes and transfer their cargo subsequently. Employing cryo-electron microscopy, spectral imaging, and fluorescence (cross) correlation spectroscopy allowed us to observe integration of all major types of lipoprotein particles into the membrane and delivery of their cargo in a receptor-independent manner. Importantly, the biophysical properties of the target cell membranes change upon delivery of cargo. The concept of receptor-independent interaction of lipoprotein particles with membranes helps us to better understand lipoprotein particle biology and can be exploited for novel treatments of dyslipidemia diseases.


Assuntos
Membrana Celular/metabolismo , Lipoproteínas/metabolismo , Transporte Biológico , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica
2.
Biol Proced Online ; 22: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308567

RESUMO

BACKGROUND: The human Caco-2 cell line is a common in vitro model of the intestinal epithelial barrier. As the intestine is a major interface in cholesterol turnover and represents a non-biliary pathway for cholesterol excretion, Caco-2 cells are also a valuable model for studying cholesterol homeostasis, including cholesterol uptake and efflux. Currently available protocols are, however, either sketchy or not consistent among different laboratories. Our aim was therefore to generate a collection of optimized protocols, considering the different approaches of the different laboratories and to highlight possibilities and limitations of measuring cholesterol transport with this cell line. RESULTS: We developed comprehensive and quality-controlled protocols for the cultivation of Caco-2 cells on filter inserts in a single tight monolayer. A cholesterol uptake as well as a cholesterol efflux assay is described in detail, including suitable positive controls. We further show that Caco-2 cells can be efficiently transfected for luciferase reporter gene assays in order to determine nuclear receptor activation, main transcriptional regulators of cholesterol transporters (ABCA1, ABCB1, ABCG5/8, NPC1L1). Detection of protein and mRNA levels of cholesterol transporters in cells grown on filter inserts can pose challenges for which we highlight essential steps and alternative approaches for consideration. A protocol for viability assays with cells differentiated on filter inserts is provided for the first time. CONCLUSIONS: The Caco-2 cell line is widely used in the scientific community as model for the intestinal epithelium, although with highly divergent protocols. The herein provided information and protocols can be a common basis for researchers intending to use Caco-2 cells in the context of cellular cholesterol homeostasis.

3.
Nano Lett ; 19(4): 2562-2567, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30848605

RESUMO

The fundamental task of lipoprotein particles is extracellular transport of cholesterol, lipids, and fatty acids. Besides, cholesterol-rich apoB-containing lipoprotein particles (i.e., low density lipoprotein LDL) are key players in progression of atherosclerotic cardiovascular disease and are associated with familial hypercholesterolemia (FH). So far, lipoprotein particle binding to the cell membrane and subsequent cargo transfer is directly linked to the lipoprotein receptors on the target cell surface. However, our observations showed that lipoprotein particle cargo transport takes place even in the absence of the receptor. This finding suggests that an alternative mechanism for lipoprotein-particle/membrane interaction, besides the receptor-mediated one, exists. Here, we combined several complementary biophysical techniques to obtain a comprehensive view on the nonreceptor mediated LDL-particle/membrane. We applied a combination of atomic force and single-molecule-sensitive fluorescence microscopy (AFM and SMFM) to investigate the LDL particle interaction with membranes of increasing complexity. We observed direct transfer of fluorescently labeled amphiphilic lipid molecules from LDL particles into the pure lipid bilayer. We further confirmed cargo transfer by fluorescence cross-correlation spectroscopy (FCCS) and spectral imaging of environment-sensitive probes. Moreover, the integration of the LDL particle into the membranes was directly visualized by high-speed atomic force microscopy (HS-AFM) and cryo-electron microscopy (cryo-EM). Overall, our data show that lipoprotein particles are able to incorporate into lipid membranes upon contact to transfer their cargo in the absence of specific receptors.


Assuntos
Membrana Celular/ultraestrutura , Doença da Artéria Coronariana/patologia , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas LDL/química , Apolipoproteínas B/química , Fenômenos Biofísicos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Doença da Artéria Coronariana/metabolismo , Microscopia Crioeletrônica , Progressão da Doença , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Hiperlipoproteinemia Tipo II/patologia , Bicamadas Lipídicas/química , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/ultraestrutura , Microscopia de Força Atômica
4.
J Lipid Res ; 60(11): 1922-1934, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530576

RESUMO

During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.


Assuntos
Aborto Habitual/metabolismo , Colesterol/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , Biologia Computacional , Feminino , Homeostase , Humanos , Gravidez , Análise de Sequência de RNA
5.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823658

RESUMO

Melanoma is a skin tumor with a high tendency for metastasis and thus is one of the deadliest cancers worldwide. Here, we investigated the expression of the scavenger receptor class B type 1 (SR-BI), a high-density lipoprotein (HDL) receptor, and tested for its role in melanoma pigmentation as well as extracellular vesicle release. We first analyzed the expression of SR-BI in patient samples and found a strong correlation with MITF expression as well as with the melanin synthesis pathway. Hence, we asked whether SR-BI could also play a role for the secretory pathway in metastatic melanoma cells. Interestingly, gain- and loss-of-function of SR-BI revealed regulation of the proto-oncogene MET. In line, SR-BI knockdown reduced expression of the small GTPase RABB22A, the ESCRT-II protein VPS25, and SNAP25, a member of the SNARE complex. Accordingly, reduced overall extracellular vesicle generation was detected upon loss of SR-BI. In summary, SR-BI expression in human melanoma enhances the formation and transport of extracellular vesicles, thereby contributing to the metastatic phenotype. Therapeutic targeting of SR-BI would not only interfere with cholesterol uptake, but also with the secretory pathway, therefore suppressing a key hallmark of the metastatic program.


Assuntos
Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Receptores Depuradores Classe B/genética , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proto-Oncogene Mas , Receptores Depuradores Classe B/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
Wien Med Wochenschr ; 168(11-12): 280-285, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29488036

RESUMO

Cholesterol is an essential lipid for mammalian cells and its homeostasis is tightly regulated. Disturbance of cellular cholesterol homeostasis is linked to atherosclerosis and cardiovascular diseases. A central role in the sensing and regulation of cholesterol homeostasis is attributed to the endoplasmic reticulum (ER). This organelle harbours inactive transcription factors, which sense ER cholesterol levels and initiate transcriptional responses after activation and translocation into the nucleus. Thereupon, these responses enable adaption to high or low cellular cholesterol levels. Besides the abovementioned canonical functions, ER stress-induced by metabolic burden-and the resulting unfolded protein response influence cholesterol metabolism relevant to metabolic disorders. This review summarizes basic as well as recent knowledge on the role of the ER in terms of regulation of cholesterol metabolism.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático , Metabolismo dos Lipídeos , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/patologia , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático , Humanos
7.
Int J Mol Sci ; 18(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786956

RESUMO

The organic mercury compound methylmercury (MeHg) is able to target the fetal brain. However, the uptake of the toxicant into placental cells is incompletely understood. MeHg strongly binds to thiol-S containing molecules such as cysteine. This MeHg-l-cysteine exhibits some structural similarity to methionine. System L plays a crucial role in placental transport of essential amino acids such as leucine and methionine and thus has been assumed to also transport MeHg-l-cysteine across the placenta. The uptake of methylmercury and tritiated leucine and methionine into the choriocarcinoma cell line BeWo was examined using transwell assay and small interfering (si)RNA mediated gene knockdown. Upon the downregulation of large neutral amino acids transporter (LAT)2 and 4F2 cell-surface antigen heavy chain (4F2hc), respectively, the levels of [³H]leucine in BeWo cells are significantly reduced compared to controls treated with non-targeting siRNA (p < 0.05). The uptake of [³H]methionine was reduced upon LAT2 down-regulation as well as methylmercury uptake after 4F2hc silencing (p < 0.05, respectively). These findings suggest an important role of system L in the placental uptake of the metal. Comparing the cellular accumulation of mercury, leucine, and methionine, it can be assumed that (1) MeHg is transported through system L amino acid transporters and (2) system L is responsible for the uptake of amino acids and MeHg primarily at the apical membrane of the trophoblast. The findings together can explain why mercury in contrast to other heavy metals such as lead or cadmium is efficiently transported to fetal blood.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Compostos de Metilmercúrio/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Colforsina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Leucina/metabolismo , Metionina/metabolismo
8.
Biochem Biophys Res Commun ; 479(3): 557-562, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27666478

RESUMO

Scavenger receptor class B, type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) and an emerging atheroprotective candidate. A central function of SR-BI is the delivery of HDL-derived cholesterol to the liver for subsequent excretion into the bile. Here, we investigated the regulation of SR-BI by the unfolded protein response (UPR), an adaptive mechanism induced by endoplasmic reticulum (ER) stress, which is frequently activated in metabolic disorders. We provide evidence that induction of acute ER stress by well-characterized chemical inducers leads to decreased SR-BI expression in hepatocyte-derived cell lines. This results in a functional reduction of selective lipid uptake from HDL. However, the regulation of SR-BI by ER stress is not a direct consequence of altered cellular cholesterol metabolism. Finally, we show that SR-BI down-regulation by the UPR might be a compensatory mechanism to provide partial adaption to ER stress. The observed down-regulation of SR-BI by ER stress in hepatic cells might contribute to the unfavorable effects of metabolic disorders on cholesterol homeostasis and cardiovascular diseases.


Assuntos
Regulação da Expressão Gênica , Receptores Depuradores Classe B/metabolismo , Resposta a Proteínas não Dobradas , Doenças Cardiovasculares/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/química , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Hep G2 , Hepatócitos/citologia , Homeostase , Humanos , Lipídeos/química , RNA Interferente Pequeno/metabolismo
9.
J Nat Prod ; 79(6): 1651-7, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220065

RESUMO

Leoligin is a natural lignan found in Edelweiss (Leontopodium nivale ssp. alpinum). The aim of this study was to examine its influence on cholesterol efflux and to address the underlying mechanism of action. Leoligin increases apo A1- as well as 1% human plasma-mediated cholesterol efflux in THP-1 macrophages without affecting cell viability as determined by resazurin conversion. Western blot analysis revealed that the protein levels of the cholesterol efflux transporters ABCA1 and ABCG1 were upregulated, whereas the SR-B1 protein level remained unchanged upon treatment with leoligin (10 µM, 24 h). Quantitative reverse transcription PCR further uncovered that leoligin also increased ABCA1 and ABCG1 mRNA levels without affecting the half-life of the two mRNAs in the presence of actinomycin D, a transcription inhibitor. Proteome analysis revealed the modulation of protein expression fingerprint in the presence of leoligin. Taken together, these results suggest that leoligin induces cholesterol efflux in THP-1-derived macrophages by upregulating ABCA1 and ABCG1 expression. This novel activity suggests leoligin as a promising candidate for further studies addressing a possible preventive or therapeutic application in the context of atherosclerosis.


Assuntos
Asteraceae/química , Lignanas/isolamento & purificação , Macrófagos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose , Transporte Biológico , Western Blotting , Dactinomicina/farmacologia , Humanos , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Receptores Nucleares Órfãos/metabolismo , Oxazinas/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Xantenos/metabolismo
10.
Biochim Biophys Acta ; 1841(7): 944-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24713582

RESUMO

The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Óxido Nítrico/antagonistas & inibidores , RNA Mensageiro/genética , Receptores Depuradores Classe B/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , HDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
11.
Histochem Cell Biol ; 143(4): 369-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25422148

RESUMO

The classic Golgi apparatus organization, an arrangement of highly ordered cisternal stacks with tubular-vesicular membrane specializations on both sides, is the functional image of a continuous flow of contents and membranes with input, metabolization, and output in a dynamic steady state. In response to treatment with 2-deoxy-D-glucose (2-DG), which lowers the cellular ATP level by about 70% within minutes, this organization is rapidly replaced by tubular-glomerular membrane convolutes described as Golgi networks and bodies. 2-DG is a non-metabolizable glucose analogue and competitive inhibitor of glycolysis, which has become attractive in the context of therapeutic approaches for several kinds of tumors specifically targeting glycolysis in cancer. With the question of whether the functions of the Golgi apparatus in lipid synthesis would be influenced by the 2-DG-induced Golgi apparatus reorganization, we focused on lipid metabolism within the Golgi bodies. For this, we applied a fluorophore-labeled short-chain ceramide (BODIPY-Cer) in various combinations with 2-DG treatment to HepG2 cell cultures and followed uptake, enrichment and metabolization to higher ordered lipids. The cellular ATP status in each experiment was controlled with a bioluminescence assay, and the response of the Golgi apparatus was tracked by immunostaining of the trans-Golgi network protein TGN46. For electron microscopy, the fluorescent BODIPY-Cer signals were converted into electron-dense precipitates by photooxidation of diaminobenzidine (DAB); DAB precipitates labeled trans-Golgi areas in control cultures but also compartments at the periphery of the Golgi bodies formed in response to 2-DG treatment, thus indicating that concentration of ceramide takes place in spite of the Golgi apparatus reorganization. Lipid analyses by thin-layer chromatography (TLC) performed in parallel showed that BODIPY-Cer is not only concentrated in compartments of the 2-DG-induced Golgi bodies but is partly metabolized to BODIPY-sphingomyelin. Both, uptake and condensation of BODIPY-Cer and its conversion to complex lipids indicate that functions of the Golgi apparatus in the cellular lipid metabolism persist although the classic Golgi apparatus organization is abolished.


Assuntos
Desoxiglucose/farmacologia , Complexo de Golgi/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Trifosfato de Adenosina/deficiência , Cromatografia em Camada Fina , Metabolismo Energético/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células Hep G2 , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Tempo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
12.
Reprod Biol Endocrinol ; 13: 88, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26251134

RESUMO

BACKGROUND: Human prostate cancer represents one of the most frequently diagnosed cancers in men worldwide. Currently, diagnostic methods are insufficient to identify patients at risk for aggressive prostate cancer, which is essential for early treatment. Recent data indicate that elevated cholesterol levels in the plasma are a prerequisite for the progression of prostate cancer. Here, we analyzed clinical prostate cancer samples for the expression of receptors involved in cellular cholesterol uptake. METHODS: We screened mRNA microarray files of prostate cancer samples for alterations in the expression levels of cholesterol transporters. Furthermore, we performed immunohistochemistry analysis on human primary prostate cancer tissue sections derived from patients to investigate the correlation of SR-BI with clinicopathological parameters and the mTOR target pS6. RESULTS: In contrast to LDLR, we identified SR-BI mRNA and protein expression to be induced in high Gleason grade primary prostate cancers. Histologic analysis of prostate biopsies revealed that 53.6 % of all cancer samples and none of the non-cancer samples showed high SR-BI staining intensity. The disease-free survival time was reduced (P = 0.02) in patients expressing high intra-tumor levels of SR-BI. SR-BI mRNA correlated with HSD17B1 and HSD3B1 and SR-BI protein staining showed correlation with active ribosomal protein S6 (RS = 0.828, P < 0.00001). CONCLUSIONS: We identified SR-BI to indicate human prostate cancer formation, suggesting that increased levels of SR-BI may be involved in the generation of a castration-resistant phenotype.


Assuntos
Adenocarcinoma/metabolismo , Antígenos CD36/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Antígenos CD36/genética , Progressão da Doença , Intervalo Livre de Doença , Humanos , Masculino , Gradação de Tumores , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
13.
J Sex Med ; 12(6): 1436-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25854918

RESUMO

INTRODUCTION: Men and postmenopausal women exhibit a higher risk for atherosclerosis than premenopausal women. These differences were often attributed to sex steroids, but the role of estrogen and testosterone in atherosclerosis are more complex than anticipated. Cross-sex hormone therapy of transsexuals is an interesting model, which has been used to study hormonal effects on serum lipid profile, insulin resistance, and body composition. However, studies on macrophage cholesterol efflux, the first step in reverse cholesterol transport, are not available. AIM: The aim of this study was to evaluate the effect of cross-sex hormone therapy in transsexuals on the capacity of serum to accept cholesterol from macrophages. METHODS: Cholesterol acceptor capacity (CAC) of serum from transsexuals before and after at least 6 months of hormone treatment was measured using macrophage tissue culture models. MAIN OUTCOME MEASURES: CAC of serum using the human acute monocytic leukemia cell line (THP-1 cells). RESULTS: Unexpectedly, the CAC of serum from male to female (MtF) transsexuals was not increased, but decreased after hormone therapy. Serum from female to male (FtM) transsexuals showed no changes in CAC. CONCLUSIONS: Despite drastic changes in hormone status, no increase in CAC was detected in MtF patients, and no alteration in CAC was seen in FtM patients. These data further challenge the traditional view that estrogen and testosterone exert beneficial and detrimental effects, respectively, on lipoprotein metabolism and ultimately atherosclerosis.


Assuntos
Colesterol/sangue , Estrogênios/sangue , Hormônios Esteroides Gonadais/uso terapêutico , Testosterona/sangue , Transexualidade/tratamento farmacológico , Adulto , Antagonistas de Androgênios/uso terapêutico , Aterosclerose , Feminino , Humanos , Masculino , Comportamento Sexual , Transexualidade/metabolismo
14.
J Lipid Res ; 55(1): 94-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24179149

RESUMO

Metabolic disorders such as type 2 diabetes cause hepatic endoplasmic reticulum (ER) stress, which affects neutral lipid metabolism. However, the role of ER stress in cholesterol metabolism is incompletely understood. Here, we show that induction of acute ER stress in human hepatic HepG2 cells reduced ABCA1 expression and caused ABCA1 redistribution to tubular perinuclear compartments. Consequently, cholesterol efflux to apoA-I, a key step in nascent HDL formation, was diminished by 80%. Besides ABCA1, endogenous apoA-I expression was reduced upon ER stress induction, which contributed to reduced cholesterol efflux. Liver X receptor, a key regulator of ABCA1 in peripheral cells, was not involved in this process. Despite reduced cholesterol efflux, cellular cholesterol levels remained unchanged during ER stress. This was due to impaired de novo cholesterol synthesis by reduction of HMG-CoA reductase activity by 70%, although sterol response element-binding protein-2 activity was induced. In mice, ER stress induction led to a marked reduction of hepatic ABCA1 expression. However, HDL cholesterol levels were unaltered, presumably because of scavenger receptor class B, type I downregulation under ER stress. Taken together, our data suggest that ER stress in metabolic disorders reduces HDL biogenesis due to impaired hepatic ABCA1 function.


Assuntos
Colesterol/biossíntese , Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Colesterol/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Glicosilação , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Processamento de Proteína Pós-Traducional , Proteína de Ligação a Elemento Regulador de Esterol 2
15.
Biochim Biophys Acta ; 1831(11): 1626-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939397

RESUMO

HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.


Assuntos
Endocitose/fisiologia , Lipoproteínas HDL/metabolismo , Animais , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos
16.
Histochem Cell Biol ; 142(6): 645-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25059650

RESUMO

The high-density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake into the liver, which finally results in cholesterol secretion into the bile. Despite several reports, the distribution of hepatic SR-BI between the sinusoidal and canalicular membranes is still under debate. We present immunohistological data using specific markers showing that the bulk of SR-BI is present in sinusoidal membranes and, to a lesser extent, in canalicular membranes in murine and human liver sections. In addition, SR-BI was detected in preparations of rat liver canalicular membranes. We also compared the in vivo findings to HepG2 cells, a widely used in vitro hepatocyte model. Interestingly, SR-BI was enriched in bile canalicular-like (BC-like) structures in polarized HepG2 cells, which were cultivated either conventionally to form a monolayer or in Matrigel to form three-dimensional structures. Fluorescently labeled HDL was transported into close proximity of BC-like structures, whereas HDL labeled with the fluorescent cholesterol analog BODIPY-cholesterol was clearly detected within these structures. Importantly, similarly to human and mouse liver, SR-BI was localized in basolateral membranes in three-dimensional liver microtissues from primary human liver cells. Our results demonstrate that SR-BI is highly enriched in sinusoidal membranes and is also found in canalicular membranes. There was no significant basolateral-apical redistribution of hepatic SR-BI in fasting and refeeding experiments in mice. Furthermore, in vitro studies in polarized HepG2 cells showed explicit differences as SR-BI was highly enriched in BC-like structures. These structures are, however, functional and accumulated HDL-derived cholesterol. Thus, biological relevant model systems should be employed when investigating SR-BI distribution in vitro.


Assuntos
Fígado/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Imunofluorescência , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Sci Rep ; 14(1): 3547, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347122

RESUMO

Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.


Assuntos
Aterosclerose , Extratos Vegetais , Sambucus nigra , Sambucus , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipogênese , Colesterol/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
18.
Nat Biotechnol ; 42(4): 587-590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37308687

RESUMO

We introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5-200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.


Assuntos
Lipossomos , Nanopartículas , Tamanho da Partícula , Lipossomos/química , Nanopartículas/química
19.
Aging Cell ; 23(6): e14139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578073

RESUMO

Age-induced decline in osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) potentiates osteoporosis and increases the risk for bone fractures. Despite epidemiology studies reporting concurrent development of vascular and bone diseases in the elderly, the underlying mechanisms for the vascular-bone cross-talk in aging are largely unknown. In this study, we show that accelerated endothelial aging deteriorates bone tissue through paracrine repression of Wnt-driven-axis in BMSCs. Here, we utilize physiologically aged mice in conjunction with our transgenic endothelial progeria mouse model (Hutchinson-Gilford progeria syndrome; HGPS) that displays hallmarks of an aged bone marrow vascular niche. We find bone defects associated with diminished BMSC osteogenic differentiation that implicate the existence of angiocrine factors with long-term inhibitory effects. microRNA-transcriptomics of HGPS patient plasma combined with aged-vascular niche analyses in progeria mice reveal abundant secretion of Wnt-repressive microRNA-31-5p. Moreover, we show that inhibition of microRNA-31-5p as well as selective Wnt-activator CHIR99021 boosts the osteogenic potential of BMSCs through de-repression and activation of the Wnt-signaling, respectively. Our results demonstrate that the vascular niche significantly contributes to osteogenesis defects in aging and pave the ground for microRNA-based therapies of bone loss in elderly.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Via de Sinalização Wnt , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Humanos , Comunicação Parácrina , MicroRNAs/metabolismo , MicroRNAs/genética , Envelhecimento/metabolismo , Camundongos Transgênicos , Diferenciação Celular , Nicho de Células-Tronco
20.
STAR Protoc ; 4(1): 102089, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853686

RESUMO

Tracer techniques to assess very-low-density lipoprotein (VLDL) secretion in humans are expensive, are time consuming, and require mathematical models to estimate VLDL kinetics. Here, we describe an alternative, time- and cost-efficient protocol to directly determine VLDL1 secretion with an intravenous (i.v.) lipid emulsion test that does not require tracers and compartmental modeling. We describe steps for intralipid infusion, blood sampling, and removal of intralipid from plasma samples, followed by density gradient ultracentrifugation to isolate VLDL1 fraction and measure the secretion rate. For complete details on the use and execution of this protocol, please refer to Bjorkegren et al. (1996),1 Al-Shayji et al. (2007),2 and Metz et al. (2022).3.


Assuntos
Emulsões Gordurosas Intravenosas , Lipoproteínas VLDL , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA