Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35611612

RESUMO

The 14q32 locus is an imprinted region in the human genome which contains multiple non-coding RNAs. We investigated the role of the long non-coding RNA maternally expressed gene 8 (MEG8) in endothelial function and its underlying mechanism. A 5-fold increase in MEG8 was observed with increased passage number in human umbilical vein endothelial cells (HUVECs), suggesting MEG8 is induced during aging. MEG8 knockdown resulted in a 1.8-fold increase in senescence, suggesting MEG8 might be protective during aging. The endothelial barrier was also impaired after MEG8 silencing. MEG8 knockdown resulted in reduced expression of microRNA (miRNA)-370 and -494 but not -127, -487b and -410. Overexpression of miRNA-370 or -494 partially rescued the MEG8-silencing-induced barrier loss. Mechanistically, MEG8 regulates expression of miRNA-370 and -494 at the mature miRNA level through interaction with the RNA-binding proteins cold-inducible RNA-binding protein (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multi-enzyme complex subunit ß (HADHB). Mature miRNA-370 and miRNA-494 were found to interact with CIRBP, whereas precursor miRNA-370 and miRNA-494 were found to interact with HADHB. Individual CIRBP and HADHB silencing resulted in downregulation of miRNA-370 and induction of miRNA-494. These results suggest MEG8 interacts with CIRBP and HADHB and contributes to miRNA processing at the post-transcriptional level.


Assuntos
MicroRNAs , RNA Longo não Codificante , Células Endoteliais , Humanos , MicroRNAs/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética
2.
EMBO Rep ; 23(6): e54157, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527520

RESUMO

Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non-coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type-specific manner. By screening for endothelial-enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA-dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO-1) pre-mRNA. Deletion of the hnRNPL binding motif in mice (Ntras∆CA/∆CA ) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α- isoform, which augments permeability of the endothelial monolayer. Ntras∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.


Assuntos
RNA Longo não Codificante , Processamento Alternativo , Animais , Células Endoteliais/metabolismo , Camundongos , Permeabilidade , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Junções Íntimas/metabolismo
3.
NAR Genom Bioinform ; 6(2): lqae045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711862

RESUMO

Malat1 is a long-noncoding RNA with critical roles in gene regulation and cancer metastasis, however its functional role in stem cells is largely unexplored. We here perform a nuclear knockdown of Malat1 in mouse embryonic stem cells, causing the de-regulation of 320 genes and aberrant splicing of 90 transcripts, some of which potentially affecting the translated protein sequence. We find evidence that Malat1 directly interacts with gene bodies and aberrantly spliced transcripts, and that it locates upstream of down-regulated genes at their putative enhancer regions, in agreement with functional genomics data. Consistent with this, we find these genes affected at both exon and intron levels, suggesting that they are transcriptionally regulated by Malat1. Besides, the down-regulated genes are regulated by specific transcription factors and bear both activating and repressive chromatin marks, suggesting that some of them might be regulated by bivalent promoters. We propose a model in which Malat1 facilitates the transcription of genes involved in chromatid dynamics and mitosis in one pathway, and affects the splicing of transcripts that are themselves involved in RNA processing in a distinct pathway. Lastly, we compare our findings with Malat1 perturbation studies performed in other cell systems and in vivo.

4.
Commun Biol ; 7(1): 541, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714838

RESUMO

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Assuntos
Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Semaforinas , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Semaforinas/metabolismo , Semaforinas/genética
5.
Nat Biotechnol ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735263

RESUMO

MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells. miRNAs guide the fusion protein to their natural target transcripts, causing them to undergo A>I editing, which can be detected by sensitive single-cell RNA sequencing. We show that agoTRIBE identifies functional miRNA targets, which are supported by evolutionary sequence conservation. In one application of the method we study microRNA interactions in single cells and identify substantial differential targeting across the cell cycle. AgoTRIBE also provides transcriptome-wide measurements of RNA abundance and allows the deconvolution of miRNA targeting in complex tissues at the single-cell level.

6.
Sci Rep ; 12(1): 843, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039572

RESUMO

A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was fivefold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.


Assuntos
Endotélio/metabolismo , Expressão Gênica/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , RNA Longo não Codificante/fisiologia , Sobrevivência Celular/genética , Endotélio/fisiologia , Regulação da Expressão Gênica/genética , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Neovascularização Patológica , RNA Longo não Codificante/genética
7.
PLoS One ; 17(9): e0265160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173935

RESUMO

The evolutionary conserved Taurine Upregulated Gene 1 (TUG1) is a ubiquitously expressed gene that is one of the highest expressed genes in human and rodent endothelial cells (ECs). We here show that TUG1 expression decreases significantly in aging mouse carotid artery ECs and human ECs in vitro, indicating a potential role in the aging endothelial vasculature system. We therefore investigated if, and how, TUG1 might function in aging ECs, but despite extensive phenotyping found no alterations in basal EC proliferation, apoptosis, barrier function, migration, mitochondrial function, or monocyte adhesion upon TUG1 silencing in vitro. TUG1 knockdown did slightly and significantly decrease cumulative sprout length upon vascular endothelial growth factor A stimulation in human umbilical vein endothelial cells (HUVECs), though TUG1-silenced HUVECs displayed no transcriptome-wide mRNA expression changes explaining this effect. Further, ectopic expression of the highly conserved and recently discovered 153 amino acid protein translated from certain TUG1 transcript isoforms did not alter angiogenic sprouting in vitro. Our data show that, despite a high expression and strong evolutionary conservation of both the TUG1 locus and the protein sequence it encodes, TUG1 does not seem to play a major role in basic endothelial cell function.


Assuntos
RNA Longo não Codificante/genética , Taurina , Fator A de Crescimento do Endotélio Vascular , Envelhecimento , Aminoácidos , Animais , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , RNA Mensageiro
8.
Front Cell Dev Biol ; 8: 619079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505972

RESUMO

Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.

9.
Commun Biol ; 3(1): 265, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457386

RESUMO

Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton.


Assuntos
Células Endoteliais/metabolismo , RNA Longo não Codificante/metabolismo , Fenômenos Biomecânicos , Células Endoteliais da Veia Umbilical Humana , Humanos , Estresse Mecânico
10.
Nat Commun ; 8: 16106, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28719590

RESUMO

The Tie receptors with their Angiopoietin ligands act as regulators of angiogenesis and vessel maturation. Tie2 exerts its functions through its supposed endothelial-specific expression. Yet, Tie2 is also expressed at lower levels by pericytes and it has not been unravelled through which mechanisms pericyte Angiopoietin/Tie signalling affects angiogenesis. Here we show that human and murine pericytes express functional Tie2 receptor. Silencing of Tie2 in pericytes results in a pro-migratory phenotype. Pericyte Tie2 controls sprouting angiogenesis in in vitro sprouting and in vivo spheroid assays. Tie2 downstream signalling in pericytes involves Calpain, Akt and FOXO3A. Ng2-Cre-driven deletion of pericyte-expressed Tie2 in mice transiently delays postnatal retinal angiogenesis. Yet, Tie2 deletion in pericytes results in a pronounced pro-angiogenic effect leading to enhanced tumour growth. Together, the data expand and revise the current concepts on vascular Angiopoietin/Tie signalling and propose a bidirectional, reciprocal EC-pericyte model of Tie2 signalling.


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Pericitos/metabolismo , Receptor TIE-2/metabolismo , Animais , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Ribonuclease Pancreático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA