Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998423

RESUMO

Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.

2.
Adv Sci (Weinh) ; 11(3): e2305898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997181

RESUMO

Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths. Realizing materials with large and broadband modulation in absorption or transmission forms a critical challenge. This study demonstrates that conducting polymer-cellulose aerogels can provide modulation of broadband THz light with large modulation range from ≈ 13% to 91% absolute transmission, while maintaining specular reflection loss < -30 dB. The exceptional THz modulation is associated with the anomalous optical conductivity peak of conducting polymers, which enhances the absorption in its oxidized state. The study also demonstrates the possibility to reduce the surface hydrophilicity by simple chemical modifications, and shows that broadband absorption of the aerogels at optical frequencies enables de-frosting by solar-induced heating. These low-cost, aqueous solution-processable, sustainable, and bio-friendly aerogels may find use in next-generation intelligent THz devices.

3.
Adv Mater ; 34(13): e2107172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064601

RESUMO

Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system. In addition to repeated on/off switching of the polymeric nanoantennas, the concept enables gradual electrical tuning of the nano-optical response, which was found to be related to the modulation of both density and mobility of the mobile polaronic charge carriers in the polymer. The resonance position of the PEDOT:Sulf nanoantennas can be conveniently controlled by disk size, here reported down to a wavelength of around 1270 nm. The presented concept may be used for electrically tunable metasurfaces, with tunable farfield as well as nearfield. The work thereby opens for applications ranging from tunable flat meta-optics to adaptable smart windows.

4.
Adv Mater ; 33(33): e2102451, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219300

RESUMO

Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

5.
Nature ; 431(7012): 1069-72, 2004 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-15510140

RESUMO

The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

6.
Nat Nanotechnol ; 15(1): 35-40, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31819242

RESUMO

Being able to dynamically shape light at the nanoscale is one of the ultimate goals in nano-optics1. Resonant light-matter interaction can be achieved using conventional plasmonics based on metal nanostructures, but their tunability is highly limited due to a fixed permittivity2. Materials with switchable states and methods for dynamic control of light-matter interaction at the nanoscale are therefore desired. Here we show that nanodisks of a conductive polymer can support localized surface plasmon resonances in the near-infrared and function as dynamic nano-optical antennas, with their resonance behaviour tunable by chemical redox reactions. These plasmons originate from the mobile polaronic charge carriers of a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) polymer network. We demonstrate complete and reversible switching of the optical response of the nanoantennas by chemical tuning of their redox state, which modulates the material permittivity between plasmonic and dielectric regimes via non-volatile changes in the mobile charge carrier density. Further research may study different conductive polymers and nanostructures and explore their use in various applications, such as dynamic meta-optics and reflective displays.

8.
Sci Rep ; 7(1): 5151, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698648

RESUMO

Unraveling the doping-related charge carrier scattering mechanisms in two-dimensional materials such as graphene is vital for limiting parasitic electrical conductivity losses in future electronic applications. While electric field doping is well understood, assessment of mobility and density as a function of chemical doping remained a challenge thus far. In this work, we investigate the effects of cyclically exposing epitaxial graphene to controlled inert gases and ambient humidity conditions, while measuring the Lorentz force-induced birefringence in graphene at Terahertz frequencies in magnetic fields. This technique, previously identified as the optical analogue of the electrical Hall effect, permits here measurement of charge carrier type, density, and mobility in epitaxial graphene on silicon-face silicon carbide. We observe a distinct, nearly linear relationship between mobility and electron charge density, similar to field-effect induced changes measured in electrical Hall bar devices previously. The observed doping process is completely reversible and independent of the type of inert gas exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA