Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563766

RESUMO

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Medições Luminescentes/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Glicemia/análise , Tecnologia sem Fio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Luminol/química
2.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276396

RESUMO

In this study, we propose an eco-friendly method for synthesizing cerium tungstate nanoparticles using hydrothermal techniques. We used scanning, transmission electron microscopy, and X-ray diffraction to analyze the morphology of the synthesized nanoparticles. The results showed that the synthesized nanoparticles were uniform and highly crystalline, with a particle size of about 50 nm. The electrocatalytic properties of the nanoparticles were then investigated using cyclic voltammetry and electrochemical impedance spectroscopy. We further used the synthesized nanoparticles to develop an electrochemical sensor based on a carbon paste electrode that can detect hydroquinone. By optimizing the differential pulse voltammetric method, a wide linearity range of 0.4 to 45 µM and a low detection limit of 0.06 µM were obtained. The developed sensor also expressed excellent repeatability (RSD up to 3.8%) and reproducibility (RSD below 5%). Interferences had an insignificant impact on the determination of analytes, making it possible to use this method for monitoring hydroquinone concentrations in tap water. This study introduces a new approach to the chemistry of materials and the environment and demonstrates that a careful selection of components can lead to new horizons in analytical chemistry.

3.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453904

RESUMO

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Assuntos
Chlorella , Microalgas , Manganês/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metais/metabolismo
4.
J Biol Inorg Chem ; 28(7): 679-687, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656248

RESUMO

The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5-4, duodenum pH 5-6, distal jejunum and ileum pH 7-8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.


Assuntos
Antibacterianos , Doxiciclina , Disponibilidade Biológica , Ferro , Concentração de Íons de Hidrogênio
5.
Inorg Chem ; 62(21): 8188-8199, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199709

RESUMO

Despite extensive research on the anticancer properties of Ru complexes with dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligands, their in vivo efficacy is rarely investigated. Aiming to understand whether the coordination of certain half-sandwich Ru(II)-arene fragments might improve the therapeutic potential of dppz ligands, we prepared a series of Ru(II)-arene complexes with the general formula [(η6-arene)Ru(dppz-R)Cl]PF6, where the arene fragment was benzene, toluene, or p-cymene and R was -NO2, -Me, or -COOMe. All compounds were fully characterized by 1H and 13C NMR spectroscopy and high-resolution ESI mass-spectrometry, and their purity was verified by elemental analysis. The electrochemical activity was investigated using cyclic voltammetry. The anticancer activity of dppz ligands and their respective Ru complexes was assessed against several cancer cell lines, and their selectivity toward cancer cells was assessed using healthy MRC5 lung fibroblasts. The substitution of benzene with a p-cymene fragment resulted in a more than 17-fold increase of anticancer activity and selectivity of Ru complexes and significantly enhanced DNA degradation in HCT116 cells. All Ru complexes were electrochemically active in the biologically accessible redox window and were shown to markedly induce the production of ROS in mitochondria. The lead Ru-dppz complex significantly reduced tumor burden in mice with colorectal cancers without inducing liver and kidney toxicity.


Assuntos
Antineoplásicos , Complexos de Coordenação , Animais , Camundongos , Antineoplásicos/química , Rutênio/química , Ligantes , Cimenos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral
6.
Anal Bioanal Chem ; 415(23): 5709-5722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453937

RESUMO

In present work, the enzyme cholesterol oxidase (ChOx) was immobilized by Nafion® (Naf) on Pt,Ru-C nanocomposite and an ionic liquid (IL)-modified carbon paste electrode (CPE) in order to create cholesterol biosensor (Naf/ChOx/Pt,Ru-C/IL-CPE). The prepared working electrodes were characterized using scanning electron microscopy-energy-dispersive spectrometry, while their electrochemical performance was evaluated using electrochemical impedance spectroscopic, cyclic voltammetric, and amperometric techniques. Excellent synergism between IL 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), Pt,Ru-C, and ChOx, as modifiers of CPE, offers the most pronounced analytical performance for improved cholesterol amperometric determination in phosphate buffer solution pH 7.50 at a working potential of 0.60 V. Under optimized experimental conditions, a linear relationship between oxidation current and cholesterol concentration was found for the range from 0.31 to 2.46 µM, with an estimated detection limit of 0.13 µM and relative standard deviation (RSD) below 5.5%. The optimized amperometric method in combination with the developed Naf/ChOx/Pt,Ru-C/IL-CPE biosensor showed good repeatability and high selectivity towards cholesterol biosensing. The proposed biosensor was successfully applied to determine free cholesterol in a human blood serum sample via its enzymatic reaction product hydrogen peroxide despite the presence of possible interferences. The percentage recovery ranged from 99.08 to 102.81%, while RSD was below 2.0% for the unspiked as well as the spiked human blood serum sample. The obtained results indicated excellent accuracy and precision of the method, concluding that the developed biosensor can be a promising alternative to existing commercial cholesterol tests used in medical practice.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanocompostos , Humanos , Carbono/química , Colesterol Oxidase/química , Líquidos Iônicos/química , Colesterol/análise , Eletrodos , Nanocompostos/química , Enzimas Imobilizadas/química , Técnicas Biossensoriais/métodos
7.
Anal Bioanal Chem ; 415(18): 4445-4458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36884077

RESUMO

In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.


Assuntos
Bismuto , Gálio , Bismuto/química , Epinefrina , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas/métodos
8.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679729

RESUMO

Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.


Assuntos
Fósforo , Titânio , Titânio/química , Reprodutibilidade dos Testes , Óxidos/química , Água
9.
Mikrochim Acta ; 189(11): 422, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253569

RESUMO

An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL-1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL-1 and 61 pg mL-1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2-), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Acetaminofen , Animais , Anticorpos , Ácido Ascórbico , Técnicas Biossensoriais/métodos , Bovinos , Dopamina , Técnicas Eletroquímicas/métodos , Feminino , Glucose , Glicina , Hemoglobinas , Humanos , Hidróxidos , Imunoensaio/métodos , Nanotubos de Carbono/química , Neodímio , Dióxido de Nitrogênio , Soroalbumina Bovina/química , Albumina Sérica Humana , Ácido Úrico
10.
Nanotechnology ; 30(47): 475702, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31426045

RESUMO

Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3-x Y x O4 nanoparticles formed. The series of Fe3-x Y x O4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 °C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3-x Y x O4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO3 3-) and As(V) (arsenate, AsO4 3-), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t 1/2) of As(V) (Y00: pH 2-3, t 1/2 = 3.12 min; Y05: pH 2-6, t 1/2 = 2.12 min and Y10: pH 2-10, t 1/2 = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.

11.
J Nanosci Nanotechnol ; 19(7): 4205-4213, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30764994

RESUMO

A series of MgxFe3-xO4 (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO4/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO4/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O4/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.

12.
Mikrochim Acta ; 186(8): 532, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309336

RESUMO

An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 µM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision. Graphical abstract Schematic representation of an amperometric method for determination L-dopa. It is based on the use of inkjet-printed carbon nanotube electrode (IJPCNT) modified with manganese dioxide (MnO2).


Assuntos
Técnicas Eletroquímicas/métodos , Levodopa/análise , Microesferas , Nanotubos de Carbono/química , Eletrodos , Humanos , Tinta , Levodopa/sangue , Levodopa/urina , Limite de Detecção , Compostos de Manganês/química , Óxidos/química , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
14.
Molecules ; 23(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050005

RESUMO

The aim of this study was to establish correlation of chemical composition and antioxidant activity of bilberry plants from Montenegro. Total phenolic, tannin, flavonoid, procyanidin and anthocyanin contents were determined in fruits and leaves extracts using spectrophotometric methods, while the measurements of metal content was carried out in an Inductively Coupled Atomic Emission Spectrometer. Qualitative and quantitative analyses of major phenolics were achieved by HPLC. In the investigated extracts, the most abundant phenolic was chlorogenic acid, followed by protocatechuic acid, while resveratrol, isoquercetin, quecetin and hyperoside were also present in significant quantities. Antioxidant potential was evaluated using two in vitro assays-FRAP and DPPH-being in the accordance with the cyclic voltammetry tests, performed as well. The results revealed that all the investigated extracts were rich in phenolic and essential mineral constituents, with significant antioxidant activity, depending on the polyphenolic and mineral contents, which was confirmed by principal component analysis.


Assuntos
Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Suplementos Nutricionais , Vaccinium myrtillus/química , Cromatografia Líquida de Alta Pressão , Minerais/química , Montenegro , Fenóis/análise , Fenóis/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais
15.
Anal Biochem ; 539: 104-112, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074398

RESUMO

In the present paper, the electrochemical behavior and the properties of two modified glassy carbon (GC) electrodes used for quantification of gallic acid in sweet wines were compared. A comparative study was conducted between titanium nitride- or wolfram carbide-doped reduced graphene oxide, labeled as TNrGO and WCrGO, respectively, modified GC electrodes, which are promising composite nanomaterials for electroanalytical applications. For the first time, WCrGO was synthesized and its electroanalytical properties compared with those of TNrGO. Results showed that the proposed materials exhibited enhanced characteristics, e.g., low limits of detection (1.1 µM and 3.1 µM for TNrGO and WCrGO, respectively), wide linear ranges (for TNrGO 4.5-76 µM and for WCrGO 10-100 µM), low adsorption, and low background current, which make them promising candidates for electrochemical sensing applications.


Assuntos
Técnicas Eletroquímicas/métodos , Ácido Gálico/análise , Grafite/química , Titânio/química , Compostos de Tungstênio/química , Carbono/química , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanoestruturas/química , Óxidos/química
16.
Anal Biochem ; 504: 20-6, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27059753

RESUMO

In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods.


Assuntos
Ácido Ascórbico/análise , Carbono , Técnicas Eletroquímicas , Compostos Férricos/química , Vidro , Níquel/química , Eletrodos , Compostos Férricos/síntese química , Micro-Ondas , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície , Ondas Ultrassônicas
17.
Acta Chim Slov ; 63(2): 220-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333543

RESUMO

This work presents the electrochemical behavior of levodopa (L-DOPA), at boron-doped diamond (BDD) electrodes, using cycling voltammetry (CV), in Britton-Robinson (BR) buffer solution, and application of the proposed electrode for the determination of L-DOPA in extracts from the seeds of velvet bean (Mucuna prurita Hook or Mucuna pruriens (L.) DC.). L-DOPA provides a well-defined and single oval-shape oxidation peak at +0.8 V vs. Ag/AgCl (3 M KCl) reference electrode in BR buffer solution at pH 3.0. Experimental parameters, such as pH of supporting electrolyte and square wave voltammetry (SWV) operating parameters (frequency and modulation amplitude) were optimized. The effect of possible interferences was evaluated. Under optimal conditions the detection limit of the developed method was 0.8 µM and the calibration curve for L-DOPA was linear in the range from 2 to 100 µM. The proposed method was successfully applied to the determination of L-DOPA in an extract from the seeds of Mucuna prurita. The obtained result was in good agreement with obtained by photometry with 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The developed approach can be beneficial for the quantification of L-DOPA using a BDD electrode as up-to-date potential alternative sensor for electroanalytical applications.


Assuntos
Técnicas Eletroquímicas/métodos , Levodopa/análise , Mucuna/química , Extratos Vegetais/análise , Calibragem , Sementes/química
18.
Anal Biochem ; 486: 1-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26119334

RESUMO

Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100µM consisting of two linear ranges: from 4 to 20µM (R(2)=0.9964) and from 20 to 100µM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9µM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method.


Assuntos
Boro/química , Carum/química , Diamante/química , Eletroquímica/instrumentação , Óleos Voláteis/química , Sementes/química , Timol/análise , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Fatores de Tempo
19.
Food Chem ; 447: 138993, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38493684

RESUMO

Excessive pesticide use can harm human health, making it essential to develop new techniques to monitor hazardous pesticides in food. Our study focuses on detecting mesotrione (MST) using an unmodified boron-doped diamond (BDD) electrode. This was the first application of cathodically pretreated BDD electrode for the detection of MST, based on its oxidation at a high potential value of +1.4 V. We theoretically examined the oxidation mechanism of MST trough the utilization of density functional theory (DFT) methodology. The utilized DPV method achieved a detection limit of 0.45 µM and showed satisfactory selectivity. The practical application of this method was demonstrated by examining corn-based food products. To ensure practical application of the method, MST was deliberately added to the samples to evaluate the accuracy of the proposed method. The effectiveness of the method was confirmed by using HPLC method. This environmentally-friendly approach can establish a solid foundation for future use in food analysis.


Assuntos
Boro , Cicloexanonas , Humanos , Eletrodos , Oxirredução , Técnicas Eletroquímicas
20.
Sci Total Environ ; 931: 172911, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705305

RESUMO

Breastfeeding provides numerous health benefits for both infants and mothers, promoting optimal growth and development while offering protection against various illnesses and diseases. This study investigated the levels of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP) and polycyclic aromatic hydrocarbons (PAH) in human milk sampled in Zadar (Croatia). The primary objectives were twofold: firstly, to evaluate the individual impact of each compound on the total antioxidant capacity (TAC) value, and secondly, to assess associated health risks. Notably, this study presents pioneering and preliminary insights into PAH levels in Croatian human milk, contributing to the limited research on PAH in breast milk worldwide. PCB and OCP levels in Croatian human milk were found to be relatively lower compared to worldwide data. Conversely, PAH levels were comparatively higher, albeit with lower detection frequencies. A negative correlation was established between organic contaminant levels and antioxidative capacity, suggesting a potential link between higher antioxidative potential and lower organic contaminant levels. Diagnostic ratio pointed towards traffic emissions as the primary source of the detected PAH. The presence of PAH suggests potential health risk, underscoring the need for further in-depth investigation.


Assuntos
Antioxidantes , Hidrocarbonetos Clorados , Leite Humano , Hidrocarbonetos Policíclicos Aromáticos , Leite Humano/química , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Croácia , Feminino , Poluentes Orgânicos Persistentes , Praguicidas/análise , Monitoramento Ambiental , Bifenilos Policlorados/análise , Adulto , Poluentes Ambientais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA