Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 47(9): 4814-4830, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916349

RESUMO

Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12's nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar mechanisms of tRNA binding and show tRNASec-dependent ATPase activity. In addition, we demonstrate that Kti12 binds directly to Elongator and that ATP hydrolysis is crucial for Elongator to maintain proper tRNA anticodon modification levels in vivo. In summary, our data reveal a hitherto uncharacterized link between two translational control pathways that regulate selenocysteine incorporation and affect ribosomal tRNA selection via specific tRNA modifications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/química , Anticódon/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Chaetomium/química , Chaetomium/enzimologia , Cristalografia por Raios X , Conformação Proteica , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Uridina/genética
2.
PLoS Genet ; 11(1): e1004931, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569479

RESUMO

Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase.


Assuntos
Caseína Quinase I/genética , Histona Acetiltransferases/genética , Fatores de Alongamento de Peptídeos/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alanina/genética , Caseína Quinase I/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina/genética
3.
PLoS Genet ; 9(2): e1003334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468660

RESUMO

Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation.


Assuntos
Amidoidrolases , Carbono-Nitrogênio Ligases/genética , Histidina/análogos & derivados , Metiltransferases , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Amidas/química , Amidas/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Histidina/biossíntese , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Ligação Proteica , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Microbiol ; 92(6): 1227-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24750273

RESUMO

Elongator is a conserved, multi-protein complex discovered in Saccharomyces cerevisiae, loss of which confers a range of pleiotropic phenotypes. Elongator in higher eukaryotes is required for normal growth and development and a mutation in the largest subunit of human Elongator (Elp1) causes familial dysautonomia, a severe recessive neuropathy. Elongator promotes addition of mcm(5) and ncm(5) modifications to uridine in the tRNA anticodon 'wobble' position in both yeast and higher eukaryotes. Since these modifications are required for the tRNAs to function efficiently, a translation defect caused by hypomodified tRNAs may therefore underlie the variety of phenotypes associated with Elongator dysfunction. The Elp1 carboxy-terminal domain contains a highly conserved arginine/lysine-rich region that resembles a nuclear localization sequence (NLS). Using alanine substitution mutagenesis, we show that this region is essential for Elongator's function in tRNA wobble uridine modification. However, rather than acting to determine the nucleo-cytoplasmic distribution of Elongator, we find that the basic region plays a critical role in a novel interaction between tRNA and the Elp1 carboxy-terminal domain. Thus the conserved basic region in Elp1 may be essential for tRNA wobble uridine modification by acting as tRNA binding motif.


Assuntos
Histona Acetiltransferases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Histona Acetiltransferases/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Microbiol ; 94(6): 1213-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352115

RESUMO

Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.


Assuntos
Histidina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Evolução Molecular , Histidina/genética , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Microbiol ; 92(3): 453-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24533860

RESUMO

Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP-DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP-DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non-viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell-cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol-phosphate synthase is not synthesized from CDP-DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP-DAG for the phosphatidylinositol synthases.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Trypanosoma brucei brucei/enzimologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Ciclo Celular , Retículo Endoplasmático/enzimologia , Deleção de Genes , Teste de Complementação Genética , Complexo de Golgi/enzimologia , Metabolismo dos Lipídeos , Fosfatidilinositóis/análise , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 108(10): 3994-9, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368139

RESUMO

Ipl1/Aurora B is the catalytic subunit of a complex that is required for chromosome segregation and nuclear division. Before anaphase, Ipl1 localizes to kinetochores, where it is required to establish proper kinetochore-microtubule associations and regulate the spindle assembly checkpoint. The protein phosphatase Glc7/PP1 opposes Ipl1 for some of these activities. To more thoroughly characterize the Glc7 phosphatase that opposes Ipl1, we have identified mutations that suppress the thermosensitivity of an ipl1-2 mutant. In addition to mutations in genes previously associated with ipl1 suppression, we recovered a null mutant in TCO89, which encodes a subunit of the TOR complex 1 (TORC1), the conserved rapamycin-sensitive kinase activity that regulates cell growth in response to nutritional status. The temperature sensitivity of ipl1-2 can also be suppressed by null mutation of TOR1 or by administration of pharmacological TORC1 inhibitors, indicating that reduced TORC1 activity is responsible for the suppression. Suppression of the ipl1-2 growth defect is accompanied by increased fidelity of chromosome segregation and increased phosphorylation of the Ipl1 substrates histone H3 and Dam1. Nuclear Glc7 levels are reduced in a tco89 mutant, suggesting that TORC1 activity is required for the nuclear accumulation of Glc7. In addition, several mutant GLC7 alleles that suppress the temperature sensitivity of ipl1-2 exhibit negative synthetic genetic interactions with TORC1 mutants. Together, our results suggest that TORC1 positively regulates the Glc7 activity that opposes Ipl1 and provide a mechanism to tie nutritional status with mitotic regulation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aurora Quinases , Núcleo Celular/metabolismo , Deleção Cromossômica , Cromossomos Fúngicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Cell Sci ; 122(Pt 23): 4375-82, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19923271

RESUMO

The conserved Aurora B protein kinase (Ipl1 in Saccharomyces cerevisiae) is essential for ensuring that sister kinetochores become attached to microtubules from opposite spindle poles (bi-orientation) before anaphase onset. When sister chromatids become attached to microtubules from a single pole, Aurora B/Ipl1 facilitates turnover of kinetochore-microtubule attachments. This process requires phosphorylation by Aurora B/Ipl1 of kinetochore components such as Dam1 in yeast. Once bi-orientation is established and tension is applied on kinetochores, Aurora B/Ipl1 must stop promoting this turnover, otherwise correct attachment would never be stabilised. How this is achieved remains elusive: it might be due to dephosphorylation of Aurora B/Ipl1 substrates at kinetochores, or might take place independently, for example because of conformational changes in kinetochores. Here, we show that Ipl1-dependent phosphorylation at crucial sites on Dam1 is maximal during S phase and minimal during metaphase, matching the cell cycle window when chromosome bi-orientation occurs. Intriguingly, when we reduced tension at kinetochores through failure to establish sister chromatid cohesion, Dam1 phosphorylation persisted in metaphase-arrested cells. We propose that Aurora B/Ipl1-facilitated bi-orientation is stabilised in response to tension at kinetochores by dephosphorylation of Dam1, resulting in termination of kinetochore-microtubule attachment turnover.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aurora Quinases , Western Blotting , Cinetocoros/fisiologia , Microtúbulos/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética
9.
Nature ; 438(7068): 679-84, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16319894

RESUMO

Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.


Assuntos
Proteínas Fúngicas/metabolismo , Análise Serial de Proteínas , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Leveduras/metabolismo , Células Eucarióticas/metabolismo , Proteínas Fúngicas/química , Fosforilação , Proteínas Quinases/classificação , Transporte Proteico , Proteômica , Reprodutibilidade dos Testes , Especificidade por Substrato , Leveduras/enzimologia
10.
Mol Microbiol ; 73(5): 869-81, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19656297

RESUMO

In yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants. Thus changes that perturb the evenly balanced ratio between hyper- and hypophosphorylated Elp1 forms present in wild-type cells lead to Elongator inactivation. Antagonistic roles for Hrr25 and Sit4 in Elongator function are further supported by our data that Sit4 inactivation is capable of restoring both zymocin sensitivity and normal ratios between the two Elp1 forms in hrr25 mutants. Hrr25 binds to Elongator in a fashion dependent on Elongator partner Kti12. Like sit4 mutants, overexpression of Kti12 triggers Elp1 hyperphosphorylation. Intriguingly, this effect of Kti12 is blocked by hrr25 mutations, which also show enhanced binding of Kti12 to Elongator. Collectively, our data suggest that rather than directly targeting Elp1, the Hrr25 kinase indirectly affects Elp1 phosphorylation states through control of Sit4-dependent dephosphorylation of Elp1.


Assuntos
Caseína Quinase I/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Antifúngicos/farmacologia , Caseína Quinase I/genética , Códon sem Sentido , Farmacorresistência Fúngica , Genes Supressores , Fatores Matadores de Levedura/farmacologia , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética
11.
Eukaryot Cell ; 8(11): 1637-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749176

RESUMO

Protein phosphatase Sit4 is required for growth inhibition of Saccharomyces cerevisiae by the antifungals rapamycin and zymocin. Here, we show that the rapamycin effector Tap42, which interacts with Sit4, is dispensable for zymocin action. Although Tap42 binding-deficient sit4 mutants are resistant to zymocin, these mutations also block interaction between Sit4 and the Sit4-associating proteins Sap185 and Sap190, previously shown to mediate zymocin toxicity. Among the four different SAP genes, we found that SAP190 deletions specifically induce rapamycin resistance but that this phenotype is reversed in the additional absence of SAP155. Similarly, the rapamycin resistance of an rrd1Delta mutant lacking the Sit4 interactor Rrd1 specifically requires the Sit4/Sap190 complex. Thus, Sit4/Sap190 and Sit4/Sap155 holophosphatases apparently play opposing roles following rapamycin treatment, although rapamycin inhibition is operational in the absence of all Sap family members or Sit4. We further identified a Sit4-interacting region on Sap185 in sap190Delta cells that mediates Sit4/Sap185 complex formation and is essential for dephosphorylation of Elp1, a subunit of the Elongator complex. This suggests that Sit4/Sap185 and Sit4/Sap190 holophosphatases promote Elongator functions, a notion supported by data showing that their inactivation eliminates Elongator-dependent processes, including tRNA suppression by SUP4 and tRNA cleavage by zymocin.


Assuntos
Regulação para Baixo , Fatores Matadores de Levedura/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sirolimo/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Microbiol ; 69(5): 1221-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627462

RESUMO

The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Farmacorresistência Fúngica , Histidina/análogos & derivados , Histidina/farmacologia , Indenos/farmacologia , Fatores Matadores de Levedura , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Micotoxinas/farmacologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Sci Rep ; 9(1): 8083, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147620

RESUMO

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Herbicidas/farmacologia , Hexosiltransferases/antagonistas & inibidores , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensaios Enzimáticos , Técnicas de Inativação de Genes , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Plântula/efeitos dos fármacos
14.
Nat Microbiol ; 3(8): 920-931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038307

RESUMO

Interactions between bacterial and fungal cells shape many polymicrobial communities. Bacteria elaborate diverse strategies to interact and compete with other organisms, including the deployment of protein secretion systems. The type VI secretion system (T6SS) delivers toxic effector proteins into host eukaryotic cells and competitor bacterial cells, but, surprisingly, T6SS-delivered effectors targeting fungal cells have not been reported. Here we show that the 'antibacterial' T6SS of Serratia marcescens can act against fungal cells, including pathogenic Candida species, and identify the previously undescribed effector proteins responsible. These antifungal effectors, Tfe1 and Tfe2, have distinct impacts on the target cell, but both can ultimately cause fungal cell death. 'In competition' proteomics analysis revealed that T6SS-mediated delivery of Tfe2 disrupts nutrient uptake and amino acid metabolism in fungal cells, and leads to the induction of autophagy. Intoxication by Tfe1, in contrast, causes a loss of plasma membrane potential. Our findings extend the repertoire of the T6SS and suggest that antifungal T6SSs represent widespread and important determinants of the outcome of bacterial-fungal interactions.


Assuntos
Antifúngicos/farmacologia , Serratia marcescens/metabolismo , Sistemas de Secreção Tipo VI/farmacologia , Antifúngicos/metabolismo , Autofagia , Candida/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Proteômica , Sistemas de Secreção Tipo VI/metabolismo
15.
BMC Genomics ; 8: 309, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17784954

RESUMO

BACKGROUND: Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans), represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukaryote. Eukaryotic protein kinases are a large superfamily of enzymes with crucial roles in most cellular processes, and therefore represent potential drug targets. We report here an exhaustive analysis of the E. cuniculi genomic database aimed at identifying and classifying all protein kinases of this organism with reference to the kinomes of two highly-divergent yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. RESULTS: A database search with a multi-level protein kinase family hidden Markov model library led to the identification of 29 conventional protein kinase sequences in the E. cuniculi genome, as well as 3 genes encoding atypical protein kinases. The microsporidian kinome presents striking differences from those of other eukaryotes, and this minimal kinome underscores the importance of conserved protein kinases involved in essential cellular processes. Approximately 30% of its kinases are predicted to regulate cell cycle progression while another approximately 28% have no identifiable homologues in model eukaryotes and are likely to reflect parasitic adaptations. E. cuniculi lacks MAP kinase cascades and almost all protein kinases that are involved in stress responses, ion homeostasis and nutrient signalling in the model fungi S. cerevisiae and S. pombe, including AMPactivated protein kinase (Snf1), previously thought to be ubiquitous in eukaryotes. A detailed database search and phylogenetic analysis of the kinomes of the two model fungi showed that the degree of homology between their kinomes of approximately 85% is much higher than that previously reported. CONCLUSION: The E. cuniculi kinome is by far the smallest eukaryotic kinome characterised to date. The difficulty in assigning clear homology relationships for nine out of the twentynine microsporidian conventional protein kinases despite its compact genome reflects the phylogenetic distance between microsporidia and other eukaryotes. Indeed, the E. cuniculi genome presents a high proportion of genes in which evolution has been accelerated by up to four-fold. There are no orthologues of the protein kinases that constitute MAP kinase pathways and many other protein kinases with roles in nutrient signalling are absent from the E. cuniculi kinome. However, orthologous kinases can nonetheless be identified that correspond to members of the yeast kinomes with roles in some of the most fundamental cellular processes. For example, E. cuniculi has clear orthologues of virtually all the major conserved protein kinases that regulate the core cell cycle machinery (Aurora, Polo, DDK, CDK and Chk1). A comprehensive comparison of the homology relationships between the budding and fission yeast kinomes indicates that, despite an estimated 800 million years of independent evolution, the two model fungi share approximately 85% of their protein kinases. This will facilitate the annotation of many of the as yet uncharacterised fission yeast kinases, and also those of novel fungal genomes.


Assuntos
Microsporídios não Classificados/enzimologia , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Catálise , Especificidade da Espécie
16.
Curr Biol ; 13(15): 1299-305, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12906789

RESUMO

BACKGROUND: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem. RESULTS: Using a library of strains that express 119 yeast protein kinases as GST fusions, we identified Elm1p as the sole kinase that could activate the kinase domain of AMP-activated protein kinase in vitro. Elm1p also activated the purified SNF1 complex, and this correlated with phosphorylation of Thr210 in the activation loop. Removal of the C-terminal domain increased the Elm1p kinase activity, indicating that it is auto-inhibitory. Expression of activated, truncated Elm1p from its own promoter gave a constitutive pseudohyphal growth phenotype that was rescued by deletion of SNF1, showing that Snf1p was acting downstream of Elm1p. Deletion of ELM1 does not give an snf- phenotype. However, Elm1p is closely related to Pak1p and Tos3p, and a pak1Delta tos3Delta elm1Delta triple mutant had an snf1- phenotype, i.e., it would not grow on raffinose and did not display hyperphosphorylation of the SNF1 target, Mig1p, in response to glucose starvation. CONCLUSIONS: Elm1p, Pak1p, and Tos3p are upstream kinases for the SNF1 complex that have partially redundant functions.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Western Blotting , Técnicas In Vitro , Espectrometria de Massas , Microscopia de Interferência , Dados de Sequência Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae
17.
Methods Mol Biol ; 365: 235-46, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17200566

RESUMO

The catalytic subunit of type 1 protein phosphatase (PP1C) interacts with a large number of polypeptides in eukaryotic cells from yeast to man and these regulatory subunits can both modulate the activity of PP1C and target it to different subcellular locations. Thus, PP1 is really a family of protein phosphatases that share a common catalytic subunit, and identifying and characterizing the PP1-associated proteins is therefore critical to understanding the cellular roles of PP1 and its ability to dephosphorylate specific substrates. Here we describe methods for affinity isolation of PP1C-containing protein complexes in the yeast Saccharomyces cerevisiae and the identification of the associated polypeptides by mass spectrometry. The basic method we describe could be easily adapted to study PP1C-associated proteins in other lower or higher eukaryotes and for characterizing the protein-protein interactions of other protein phosphatases in yeast.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia de Afinidade , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Proteína Fosfatase 1 , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Biol Cell ; 15(3): 1459-69, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14718557

RESUMO

Kluyveromyces lactis zymocin, a heterotrimeric toxin complex, imposes a G1 cell cycle block on Saccharomyces cerevisiae that requires the toxin-target (TOT) function of holo-Elongator, a six-subunit histone acetylase. Here, we demonstrate that Elongator is a phospho-complex. Phosphorylation of its largest subunit Tot1 (Elp1) is supported by Kti11, an Elongator-interactor essential for zymocin action. Tot1 dephosphorylation depends on the Sit4 phosphatase and its associators Sap185 and Sap190. Zymocin-resistant cells lacking or overproducing Elongator-associator Tot4 (Kti12), respectively, abolish or intensify Tot1 phosphorylation. Excess Sit4.Sap190 antagonizes the latter scenario to reinstate zymocin sensitivity in multicopy TOT4 cells, suggesting physical competition between Sit4 and Tot4. Consistently, Sit4 and Tot4 mutually oppose Tot1 de-/phosphorylation, which is dispensable for integrity of holo-Elongator but crucial for the TOT-dependent G1 block by zymocin. Moreover, Sit4, Tot4, and Tot1 cofractionate, Sit4 is nucleocytoplasmically localized, and sit4Delta-nuclei retain Tot4. Together with the findings that sit4Delta and totDelta cells phenocopy protection against zymocin and the ceramide-induced G1 block, Sit4 is functionally linked to Elongator in cell cycle events targetable by antizymotics.


Assuntos
Acetiltransferases/metabolismo , Micotoxinas/toxicidade , Fatores de Alongamento de Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases , Fatores Matadores de Levedura , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2 , Saccharomyces cerevisiae
19.
G3 (Bethesda) ; 7(9): 3203-3215, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28754723

RESUMO

The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3∆ or chl4∆ in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3 Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Aptidão Genética , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epistasia Genética , Deleção de Genes , Expressão Gênica , Estudos de Associação Genética , Viabilidade Microbiana/genética , Mutação , Fenótipo , Ligação Proteica , Coesinas
20.
Toxins (Basel) ; 9(9)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872616

RESUMO

Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis, which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI (K. lactis Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin. Here, we show that zymocin can be used as a tool to genetically analyse KTI12, a gene previously shown to code for an Elongator partner protein. From a kti12 mutant pool of zymocin survivors, we identify motifs in Kti12 that are functionally directly coupled to Elongator activity. In addition, shared requirement of U34 modifications for nonsense and missense tRNA suppression (SUP4; SOE1) strongly suggests that Kti12 and Elongator cooperate to assure proper tRNA functioning. We show that the Kti12 motifs are conserved in plant ortholog DRL1/ELO4 from Arabidopsis thaliana and seem to be involved in binding of cofactors (e.g., nucleotides, calmodulin). Elongator interaction defects triggered by mutations in these motifs correlate with phenotypes typical for loss of U34 modification. Thus, tRNA modification by Elongator appears to require physical contact with Kti12, and our preliminary data suggest that metabolic signals may affect proper communication between them.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Arabidopsis/genética , Fatores Matadores de Levedura/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA