Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 30(10): 1965-76, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21468032

RESUMO

Precise 5' splice-site recognition is essential for both constitutive and regulated pre-mRNA splicing. The U1 small nuclear ribonucleoprotein particle (snRNP)-specific protein U1C is involved in this first step of spliceosome assembly and important for stabilizing early splicing complexes. We used an embryonically lethal U1C mutant zebrafish, hi1371, to investigate the potential genomewide role of U1C for splicing regulation. U1C mutant embryos contain overall stable, but U1C-deficient U1 snRNPs. Surprisingly, genomewide RNA-Seq analysis of mutant versus wild-type embryos revealed a large set of specific target genes that changed their alternative splicing patterns in the absence of U1C. Injection of ZfU1C cRNA into mutant embryos and in vivo splicing experiments in HeLa cells after siRNA-mediated U1C knockdown confirmed the U1C dependency and specificity, as well as the functional conservation of the effects observed. In addition, sequence motif analysis of the U1C-dependent 5' splice sites uncovered an association with downstream intronic U-rich elements. In sum, our findings provide evidence for a new role of a general snRNP protein, U1C, as a mediator of alternative splicing regulation.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/fisiologia , Teste de Complementação Genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Precursores de RNA/química , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de DNA , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Sci Rep ; 6: 31313, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510448

RESUMO

Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Biologia Computacional , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , RNA/genética , RNA Circular
3.
Cell Rep ; 10(1): 103-11, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543144

RESUMO

Circular RNAs (circRNAs), an abundant class of noncoding RNAs in higher eukaryotes, are generated from pre-mRNAs by circularization of adjacent exons. Using a set of 15 circRNAs, we demonstrated their cell-type-specific expression and circular versus linear processing in mammalian cells. Northern blot analysis combined with RNase H cleavage conclusively proved a circular configuration for two examples, LPAR1 and HIPK3. To address the circularization mechanism, we analyzed the sequence requirements using minigenes derived from natural circRNAs. Both canonical splice sites are required for circularization, although they vary in flexibility and potential use of cryptic sites. Surprisingly, we found that no specific circRNA exon sequence is necessary and that potential flanking intron structures can modulate circularization efficiency. In combination with splice inhibitor assays, our results argue that the canonical spliceosomal machinery functions in circRNA biogenesis, constituting an alternative splicing mode.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Sítios de Splice de RNA/genética , RNA não Traduzido/genética , Células HEK293 , Humanos , Íntrons/genética , Conformação de Ácido Nucleico , Precursores de RNA/genética , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA