Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 129(3): 557-68, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26698217

RESUMO

How, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes. Moreover, SEZ6L2 can partially correct the cathepsin D hypersecretion resulting from the knockdown of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase in HeLa cells (i.e. in cells that are unable to synthesize Man-6-P signals). Interestingly, cleavage of SEZ6L2 by cathepsin D generates an N-terminal soluble fragment that induces neurite outgrowth, whereas its membrane counterpart prevents this. Taken together, our findings highlight that SEZ6L2 can serve as receptor to mediate the sorting of cathepsin D to endosomes, and suggest that proteolytic cleavage of SEZ6L2 by cathepsin D modulates neuronal differentiation.


Assuntos
Catepsina D/metabolismo , Proteínas de Membrana/metabolismo , Neuritos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Endossomos/fisiologia , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatologia , Transporte Proteico/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Difosfato de Uridina/metabolismo
2.
Biochim Biophys Acta ; 1863(9): 2299-310, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27316455

RESUMO

ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations. Deletion of amino acids L(340) to L(354) resulted in the retention of ATG9A in the endoplasmic reticulum. In addition, we found that substitution of the L(711)YM(713) sequence (located in the C-terminal region of ATG9A) by alanine residues severely impaired its transport through the Golgi apparatus. This defect could be corrected by oligomerization of the mutant protein with co-transfected wild-type ATG9A, suggesting that ATG9A oligomerization may help its sorting through biosynthetic compartments. Lastly, the study of the consequences of the LYM/AAA mutation on the intracellular trafficking of ATG9A highlighted that some newly synthesized ATG9A can bypass the Golgi apparatus to reach the plasma membrane. Taken together, these findings provide new insights into the intracellular pathways followed by ATG9A to reach different subcellular compartments, and into the intramolecular determinants that drive the sorting of this protein.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Vias Biossintéticas , Compartimento Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Polissacarídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Estabilidade Proteica , Transporte Proteico , Proteólise , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
3.
Biochem Biophys Res Commun ; 479(2): 404-409, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27663665

RESUMO

ATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein. Here, we investigated whether the residues that align with this motif in human ATG9A (V515-C519) are also required for its trafficking in mammalian cells. Interestingly, our findings support that human ATG9A self-interacts as well, and that this process promotes transport of ATG9A molecules through the Golgi apparatus. Furthermore, our data reveal that the transport of ATG9A out of the ER is severely impacted after mutation of the conserved V515-C519 motif. Nevertheless, the mutated ATG9A molecules could still interact with each other, indicating that the molecular mechanism of self-interaction differs in mammalian cells compared to yeast. Using sequential amino acid substitutions of glycine 516 and cysteine 519, we found that the stability of ATG9A relies on both of these residues, but that only the former is required for efficient transport of human ATG9A from the endoplasmic reticulum to the Golgi apparatus.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Glicina/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Alanina/química , Motivos de Aminoácidos , Proteínas Relacionadas à Autofagia/genética , Membrana Celular/metabolismo , Cisteína/química , Retículo Endoplasmático/metabolismo , Deleção de Genes , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Domínios Proteicos , Transporte Proteico , Proteínas de Transporte Vesicular/genética
4.
Int J Mol Sci ; 18(1)2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28036022

RESUMO

Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several "non-consensus" sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These "unconventional" or "less known" transport mechanisms are the focus of this review.


Assuntos
Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas , Animais , Humanos , Hidrolases/química , Hidrolases/metabolismo , Mamíferos , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Transporte Proteico
5.
Toxicol In Vitro ; 29(5): 1156-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25952326

RESUMO

Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol synthesized by various plants such as grape vine. Resveratrol (RSV) is a widely studied molecule, largely for its chemopreventive effect in different mouse cancer models. We propose a mechanism underlying the cytotoxic activity of RSV on colon cancer cells. Our data show that resveratrol induces apoptosis, as observed by the cleavage of PARP-1 and chromatin condensation. We show that the tumor suppressor p53 is activated in response to RSV and participates to the apoptotic process. Additionally, we show that HCT-116 p53 wt colon carcinoma cells are significantly more sensitive than HCT-116 p53-/- cells to RSV. RSV induces DNA damage including double strand breaks, as evidenced by the presence of multiple γ-H2AX foci in 50% of cells after a 24 h treatment with 25 µM RSV. The formation of DNA damage does not appear to rely on a pro-oxidant effect of the molecule, inhibition of topoisomerase I, or DNA intercalation. Rather, we show that DNA damage is the consequence of type II topoisomerase poisoning. Exposure of HCT-116 cells to RSV leads to activation of the Ataxia Telangiectasia Mutated (ATM) kinase, and ATM is required to activate p53.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA