Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(4): 2740-2748, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33539075

RESUMO

Reaction of 3 equiv of NaNR2 (R = SiMe3) with NpCl4(DME)2 in THF afforded the Np(IV) silylamide complex, [Np(NR2)3Cl] (1), in good yield. Reaction of 1 with 1.5 equiv of KC8 in THF, in the presence of 1 equiv of dibenzo-18-crown-6, resulted in formation of [{K(DB-18-C-6)(THF)}3(µ3-Cl)][Np(NR2)3Cl]2 (4), also in good yield. Complex 4 represents the first structurally characterized Np(III) amide. Finally, reaction of NpCl4(DME)2 with 5 equiv of NaNR2 and 1 equiv of dibenzo-18-crown-6 afforded the Np(IV) bis(metallacycle), [{Na(DB-18-C-6)(Et2O)0.62(κ1-DME)0.38}2(µ-DME)][Np{N(R)(SiMe2CH2)}2(NR2)]2 (8), in moderate yield. Complex 8 was characterized by 1H NMR spectroscopy and X-ray crystallography and represents a rare example of a structurally characterized neptunium-hydrocarbyl complex. To support these studies, we also synthesized the uranium analogues of 4 and 8, namely, [K(2,2,2-cryptand)][U(NR2)3Cl] (2), [K(DB-18-C-6)(THF)2][U(NR2)3Cl] (3), [Na(DME)3][U{N(R)(SiMe2CH2)}2(NR2)] (6), and [{Na(DB-18-C-6)(Et2O)0.5(κ1-DME)0.5}2(µ-DME)][U{N(R)(SiMe2CH2)}2(NR2)]2 (7). Complexes 2, 3, 6, and 7 were characterized by a number of techniques, including NMR spectroscopy and X-ray crystallography.

2.
Inorg Chem ; 59(14): 10138-10145, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32594736

RESUMO

The solid-state 15N NMR powder spectra of the thorium nitride complex, [K(18-crown-6)(THF)2][(R2N)3Th(µ-15N)Th(NR2)3] ([K][1-15N], R = SiMe3), and the thorium amide complex, [Th(NR2)3(15NH2)] (2-15N), were recorded. The spectrum for [K][1-15N] represents the first reported solid-state 15N NMR data for an actinide complex. The experimentally measured tensor spans are Ω = 847 ppm for [K][1-15N] and Ω = 237 ppm for 2-15N. Both shielding tensors exhibit axial symmetry, which for [K][1-15N] is consistent with a local rotational symmetry of its 15N-labeled nitride ligand. For 2-15N, the axial asymmetry can be rationalized by a quasi-free Th-NH2 bond rotation in the solid-state. Density functional theory calculations overestimate the tensor span somewhat for [K][1-15N], but provide isotropic shifts in good agreement with both the solid-state and solution values for both complexes. Natural localized molecular orbital analyses of the nuclear shielding reveal that the larger tensor span in [K][1-15N] vs 2-15N is primarily a consequence of more pronounced covalency of the σ(N-Th) bonds and large spin-orbit coupling due to significant Th 5f orbital contribution to those bonds, impacting the principal components of the shielding tensor perpendicular to the Th-N-Th axis. Overall, our analysis confirms the involvement of the 5f orbitals in Th-N multiple bonds and further demonstrates the value of solid-state NMR spectroscopy for interrogating actinide-ligand bonding.

3.
Acta Crystallogr C ; 68(Pt 2): o84-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22307259

RESUMO

4-Hydroxypyridine and terephthalic acid cocrystallize as a hydrate, 4-pyridone-terephthalic acid-water (2/1/2), 2C(5)H(5)NO·C(8)H(6)O(4)·2H(2)O, from a methanol-water solution. The molecules form a two-dimensional hydrogen-bonded network resulting in sheets of hydrogen-bonded molecules that lie parallel to the (10-2) plane. In contrast, 3-hydroxypyridine and terephthalic acid form the salt bis(3-hydroxypyridinium) terephthalate, 2C(5)H(6)NO(+)·C(8)H(4)O(4)(2-), giving rise to two-dimensional hydrogen-bonded sheets extending through the lattice parallel to the (102) plane.

4.
Chem Sci ; 12(47): 15519-15527, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35003580

RESUMO

Reaction of [K(DME)][Th{N(R)(SiMe2 CH2)}2(NR2)] (R = SiMe3) with 1 equiv. of [U(NR2)3(NH2)] (1) in THF, in the presence of 18-crown-6, results in formation of a bridged uranium-thorium nitride complex, [K(18-crown-6)(THF)2][(NR2)3UIV(µ-N)ThIV(NR2)3] (2), which can be isolated in 48% yield after work-up. Complex 2 is the first isolable molecular mixed-actinide nitride complex. Also formed in the reaction is the methylene-bridged mixed-actinide nitride, [K(18-crown-6)][K(18-crown-6)(Et2O)2][(NR2)2U(µ-N)(µ-κ2-C,N-CH2SiMe2NR)Th(NR2)2]2 (3), which can be isolated in 34% yield after work-up. Complex 3 is likely generated by deprotonation of a methyl group in 2 by [NR2]-, yielding the new µ-CH2 moiety and HNR2. Reaction of 2 with 0.5 equiv. of I2 results in formation of a UV/ThIV bridged nitride, [(NR2)3UV(µ-N)ThIV(NR2)3] (4), which can be isolated in 42% yield after work-up. The electronic structure of 4 was analyzed with EPR spectroscopy, SQUID magnetometry, and NIR-visible spectroscopy. This analysis demonstrated that the energies of 5f orbitals of 4 are largely determined by the strong ligand field exerted by the nitride ligand.

5.
Chem Sci ; 10(26): 6431-6436, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31367305

RESUMO

Reaction of the thorium metallacycle, [Th{N(R)(SiMe2)CH2}(NR2)2] (R = SiMe3) with 1 equiv. of NaNH2 in THF, in the presence of 18-crown-6, results in formation of the bridged thorium nitride complex, [Na(18-crown-6)(Et2O)][(R2N)3Th(µ-N)(Th(NR2)3] ([Na][1]), which can be isolated in 66% yield after work-up. Complex [Na][1] is the first isolable molecular thorium nitride complex. Mechanistic studies suggest that the first step of the reaction is deprotonation of [Th{N(R)(SiMe2)CH2}(NR2)2] by NaNH2, which results in formation of the thorium bis(metallacycle) complex, [Na(THF) x ][Th{N(R)(SiMe2CH2)}2(NR2)], and NH3. NH3 then reacts with unreacted [Th{N(R)(SiMe2)CH2}(NR2)2], forming [Th(NR2)3(NH2)] (2), which protonates [Na(THF) x ][Th{N(R)(SiMe2CH2)}2(NR2)] to give [Na][1]. Consistent with hypothesis, addition of excess NH3 to a THF solution of [Th{N(R)(SiMe2)CH2}(NR2)2] results in formation of [Th(NR2)3(NH2)] (2), which can be isolated in 51% yield after work-up. Furthermore, reaction of [K(DME)][Th{N(R)(SiMe2CH2)}2(NR2)] with 2, in THF-d 8, results in clean formation of [K][1], according to 1H NMR spectroscopy. The electronic structures of [1]- and 2 were investigated by 15N NMR spectroscopy and DFT calculations. This analysis reveals that the Th-Nnitride bond in [1]- features more covalency and a greater degree of bond multiplicity than the Th-NH2 bond in 2. Similarly, our analysis indicates a greater degree of covalency in [1]- vs. comparable thorium imido and oxo complexes.

6.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 11): 1283-6, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594492

RESUMO

Slow co-crystallization of a solution of benzene-1,3,5-tri-carb-oxy-lic acid with a large excess of 4-hy-droxy-pyridine produces an inter-penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri-carb-oxy-lic acid mol-ecules, C9H6O6·3C5H5NO. This structure represents an ortho-rhom-bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014 ▸). Acta Cryst. E70, o453-o454].

7.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 7): 861-3, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26279886

RESUMO

The structure of the title salt, C5H6NO(+)·C9H5O6 (-), (I), shows that 4-hy-droxy-pyridine has abstracted an H atom from benzene-1,3,5-tri-carb-oxy-lic acid, yielding a pyridinium cation and carboxyl-ate anion. The two ions form an extensive three-dimensional hydrogen-bonded network throughout the crystal. The hydrogen bonds that comprise the core of the network are considered strong, with O-H⋯O and N-H⋯O donor-to-acceptor distances ranging from 2.533 (2) to 2.700 (2) Å. Packing is further enhanced by π-stacking of the cations and anions with like species [centroid-centroid distance = 3.6206 (13) Å].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA