Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 57(6): 1681-1698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34176151

RESUMO

Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.


Assuntos
Fucus , Microbiota , North Carolina , Filogenia , Filogeografia
2.
Nat Commun ; 13(1): 6022, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224175

RESUMO

The Greenland Ice Sheet discharges ice to the ocean through hundreds of outlet glaciers. Recent acceleration of Greenland outlet glaciers has been linked to both oceanic and atmospheric drivers. Here, we leverage temporally dense observations, regional climate model output, and newly developed time series analysis tools to assess the most important forcings causing ice flow variability at one of the largest Greenland outlet glaciers, Helheim Glacier, from 2009 to 2017. We find that ice speed correlates most strongly with catchment-integrated runoff at seasonal to interannual scales, while multi-annual flow variability correlates most strongly with multi-annual terminus variability. The disparate time scales and the influence of subglacial topography on Helheim Glacier's dynamics highlight different regimes that can inform modeling and forecasting of its future. Notably, our results suggest that the recent terminus history observed at Helheim is a response to, rather than the cause of, upstream changes.


Assuntos
Camada de Gelo , Groenlândia , Oceanos e Mares
3.
Commun Earth Environ ; 1(1): 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33184615

RESUMO

Icebergs represent nearly half of the mass loss from the Greenland Ice Sheet and provide a distributed source of freshwater along fjords which can alter fjord circulation, nutrient levels, and ultimately the Meridional Overturning Circulation. Here we present analyses of high resolution optical satellite imagery using convolutional neural networks to accurately delineate iceberg edges in two East Greenland fjords. We find that a significant portion of icebergs in fjords are comprised of small icebergs that were not detected in previously-available coarser resolution satellite images. We show that the preponderance of small icebergs results in high freshwater delivery, as well as a short life span of icebergs in fjords. We conclude that an inability to identify small icebergs leads to inaccurate frequency-size distribution of icebergs in Greenland fjords, an underestimation of iceberg area (specifically for small icebergs), and an overestimation of iceberg life span.

4.
Science ; 363(6427)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733389

RESUMO

Minchew et al take issue with our main conclusion that friction at the glacier bed does not control fast glacier flow. In this response, we further justify our methodology. We also point out that numerical studies referred to by Minchew et al rely on inversions that are based on a sliding relation in which sliding speed is proportional to basal drag. Furthermore, observational studies referred to by Minchew et al apply to glaciological settings that do not correspond to the terminal regions of Greenland outlet glaciers that we studied.


Assuntos
Fricção , Camada de Gelo , Groenlândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA