Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 111(6): 2734-2740, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30277512

RESUMO

Several species of aphids (Hemiptera: Aphididae) infesting wheat may reduce yield by the transmission of barley yellow dwarf (BYD). Neonicotinoid seed treatments and foliar application of insecticides are two common methods to control aphid infestations and reduce BYD. An analysis was carried out across 33 insecticide efficacy tests performed in west Tennessee during the last 11 yr to determine how insecticide seed treatments and/or a late-winter foliar insecticide application affected aphid populations, incidence of BYD, and yield. A significant decrease in springtime aphid populations and incidence of BYD was observed when using a seed treatment, a foliar insecticide application, or both. Average wheat yields were increased by 280-381 kg/ha (5.3-7.2%) if an insecticide seed treatment was used or when a foliar insecticide application was made. Compared with insecticide seed treatments, average springtime aphid populations and the incidence of BYD were lower when a foliar insecticide was applied. A foliar insecticide application made in addition to insecticide seed treatments increased yield by an average of 196 kg/ha (3.4%). The yield increases over the nontreated control suggest that wheat growers in west Tennessee can use insecticides to manage aphids and prevent transmission of BYD. Consideration of environmental conditions, whether or not insecticide seed treatments were used, and scouting can be used to help make decisions on when or if to apply foliar insecticides.


Assuntos
Afídeos , Insetos Vetores , Inseticidas/administração & dosagem , Luteovirus , Triticum/virologia , Animais , Afídeos/virologia , Insetos Vetores/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Sementes , Triticum/crescimento & desenvolvimento
2.
J Econ Entomol ; 110(3): 835-847, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398581

RESUMO

Sixteen honey bee (Apis mellifera L.) colonies were placed in four different agricultural landscapes to study the effects of agricultural landscape and exposure to pesticides on honey bee health. Colonies were located in three different agricultural areas with varying levels of agricultural intensity (AG areas) and one nonagricultural area (NAG area). Colonies were monitored for their performance and productivity for one year by measuring colony weight changes, brood production, and colony thermoregulation. Palynological and chemical analyses were conducted on the trapped pollen collected from each colony and location. Our results indicate that the landscape's composition significantly affected honey bee colony performance and development. Colony weight and brood production were significantly greater in AG areas compared to the NAG area. Better colony thermoregulation in AG areas' colonies was also observed. The quantities of pesticides measured in the trapped pollen were relatively low compared to their acute toxicity. Unexplained queen and colony losses were recorded in the AG areas, while colony losses because of starvation were observed in the NAG area. Our results indicate that landscape with high urban activity enhances honey bee brood production, with no significant effects on colony weight gain. Our study indicates that agricultural crops provide a valuable resource for honey bee colonies, but there is a trade-off with an increased risk of exposure to pesticides.


Assuntos
Agricultura/métodos , Abelhas/fisiologia , Inseticidas/toxicidade , Animais , Criação de Abelhas , Abelhas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Tennessee
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA