Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 135(24): 2763-2780, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34854902

RESUMO

The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-ß1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented ß-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-ß1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Imidazóis/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo , Masculino , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Fator de Crescimento Transformador beta1/sangue
2.
Clin Sci (Lond) ; 135(9): 1145-1163, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33899912

RESUMO

Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Imidazóis/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor B2 da Bradicinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Doenças Vasculares/prevenção & controle , Animais , Aorta Torácica/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo
3.
Exp Dermatol ; 29(9): 891-901, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697884

RESUMO

Since its first description around the year 2000, the local renin-angiotensin system (RAS) in skin has been subject of an increasing number of studies with many additions over the last two to three years. A focus of research has been investigations on the role of cutaneous angiotensin receptors and locally synthesised angiotensin II in wound healing, in dermatoses associated with skin fibrosis and in melanoma. This review will provide an introduction into the RAS with emphasis on information relevant for the cutaneous RAS. It will discuss the role of the RAS in skin physiology, followed by a detailed review of the existing literature addressing the role of local angiotensin II and angiotensin AT1 and AT2 receptors in wound healing and in various skin diseases such as hypertrophic scars/keloids, scleroderma, dystrophic epidermolysis bullosa, Dupuytren's disease, squamous cell carcinoma, melanoma and psoriasis. In a final section, the potential relevance of drugs, which interfere with the RAS, for future therapy of dermatological disorders is discussed. Collectively, research about the RAS in skin can currently be described as an area, which has gained increasing attention by basic researchers, thus resulting in a multitude of preclinical studies pointing to the potential relevance of components of the RAS as drug targets in dermatological diseases. With a few small clinical studies already performed successfully for indications such as hypertrophic scars and keloids, it can be said that the skin RAS is now in the critical phase of translation from preclinical evidence to clinical use.


Assuntos
Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Dermatopatias/metabolismo , Pele/metabolismo , Cicatrização , Animais , Humanos
4.
Exp Dermatol ; 29(9): 902-909, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32678966

RESUMO

Hypertrophic scar and keloid are two types of fibroproliferative conditions that result from excessive extracellular matrix production. The underlying pathological mechanism is not entirely clear. Activation of the renin-angiotensin system (RAS) is associated with fibrosis in various organs. RAS components including angiotensin II (Ang II), angiotensin AT1 and AT2 receptors, and angiotensin-converting enzyme (ACE) are expressed in the skin and act independently from the plasma RAS. AT1 receptors, which are usually the dominating receptor subtype, promote fibrosis and scar formation, while AT2 receptors inhibit the aforementioned AT1 receptor-coupled effects. Elevated angiotensin II (Ang II) levels acting on the AT1 receptor contribute to skin scar formation through increased expression of inflammatory factors such as interleukin-6 (IL-6), angiogenic factors such as vascular endothelial growth factor (VEGF) and fibrinogenic factors such as transforming growth factor-ß1 (TGF-ß1) and connective tissue growth factor (CTGF), while at the same time suppressing the anti-fibrotic tissue inhibitors of matrix metalloproteinase (TIMPs). First, small clinical trials have provided evidence that inhibition of the ACE/Ang II/ AT1 receptor axis may be effective in the treatment of hypertrophic scars/keloids. This review provides a detailed overview of the current literature on the RAS in skin, wound healing and scar formation and discusses the translational potential of targeting this hormonal system for treatment and prevention of hypertrophic scars and keloids.


Assuntos
Cicatriz Hipertrófica/etiologia , Queloide/etiologia , Sistema Renina-Angiotensina , Pele/metabolismo , Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Animais , Cicatriz Hipertrófica/tratamento farmacológico , Fibrose , Humanos , Queloide/tratamento farmacológico , Pele/patologia , Cicatrização
5.
Mult Scler ; 26(10): 1187-1196, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287367

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing inflammatory central nervous system (CNS) disease for which there is no cure. Immunoglobulin G autoantibodies specific for the water channel aquaporin-4 are a serum biomarker, believed to induce complement-dependent astrocyte damage with secondary demyelination. OBJECTIVE: To investigate the effect of angiotensin AT2 receptor (AT2R) stimulation on NMOSD-like pathology and its underlying mechanism. METHODS: NMOSD-like pathology was induced in mice by intracerebral injection of immunoglobulin-G isolated from NMOSD patient serum, with complement. This mouse model produces the characteristic histological features of NMOSD. A specific AT2R agonist, Compound 21 (C21), was given intracerebrally at day 0 and by intrathecal injection at day 2. RESULTS: Loss of aquaporin-4 and glial fibrillary acidic protein was attenuated by treatment with C21. Administration of C21 induced mRNA for interleukin-10 in the brain. NMOSD-like pathology was exacerbated in interleukin-10-deficient mice, suggesting a protective role. C21 treatment did not attenuate NMOSD-like pathology in interleukin-10-deficient mice, indicating that the protective effect of AT2R stimulation was dependent on interleukin-10. CONCLUSION: Our findings identify AT2R as a novel potential therapeutic target for the treatment of NMOSD. Interleukin-10 signaling is an essential part of the protective mechanism counteracting NMOSD pathology.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4/genética , Autoanticorpos , Humanos , Interleucina-10 , Camundongos , Recidiva Local de Neoplasia , Neuromielite Óptica/tratamento farmacológico , Receptor Tipo 2 de Angiotensina
6.
Am J Physiol Heart Circ Physiol ; 316(5): H958-H970, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707614

RESUMO

Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1-7) [ANG-(1-7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1-7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled "The Renin-Angiotensin System: Going Beyond the Classical Paradigms," in which the signaling and physiological actions of ANG-(1-7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Congressos como Assunto , Humanos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Clin Sci (Lond) ; 132(7): 777-790, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29540539

RESUMO

The Angiotensin II type 2 receptor (AT2R) promotes vasodilation by nitric oxide (NO) release from endothelial cells. However, the mechanisms underlying the AT2R-induced stimulation of endothelial NO synthase (eNOS) is still not completely understood. Therefore, we investigated whether in addition to the known AT2R-mediated phosphorylation of eNOS at Ser1177, activation of phosphatases and dephosphorylation of eNOS at Tyr657 and Thr495 are also involved. Human aortic endothelial cells (HAEC) were stimulated with the AT2R-agonist Compound 21 (C21) (1 µM) in the presence or absence of either PD123319 (10 µM; AT2R antagonist), l-NG-Nitroarginine methyl ester (l-NAME) (10 µM; eNOS inhibitor), MK-2206 (100 nM; protein kinase B (Akt) inhibitor) sodium fluoride (NaF) (1 nM; serine/threonine phosphatase inhibitor) or sodium orthovanadate (Na3VO4) (10 nM; tyrosine phosphatase inhibitor). NO release was estimated by quantifying 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. The phosphorylation status of activating (eNOS-Ser1177) or inhibitory eNOS residues (eNOS-Tyr657, eNOS-Thr495) was determined by Western blotting. Phosphorylation of Akt at Ser473 was measured to estimate Akt activity. AT2R stimulation significantly increased NO release from HAEC, which was blocked by PD123319, l-NAME and both phosphatase inhibitors. Intracellular calcium transients were not changed by C21. AT2R stimulation resulted in phosphorylation of eNOS-Ser1177 and dephosphorylation of eNOS-Tyr657 and eNOS-Thr495 Phosphorylation at eNOS-Ser1177 was prevented by inhibition of Akt with MK-2206. From these data, we conclude that AT2R stimulation in human endothelial cells increases eNOS activity through phosphorylation of activating eNOS residues (eNOS-Ser1177) by Akt, and through dephosphorylation of inactivating eNOS residues (eNOS-Tyr657, eNOS-Thr495) by serine/threonine and tyrosine phosphatases, thus increasing NO release.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Células Cultivadas , Ativação Enzimática , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas , Tiofenos
8.
Clin Sci (Lond) ; 132(5): 581-593, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29500223

RESUMO

Significant neuroprotective effects of angiotensin II type 2 (AT2) receptor (AT2 receptor) agonists in ischemic stroke have been previously demonstrated in multiple studies. However, the routes of agonist application used in these pre-clinical studies, direct intracerebroventricular (ICV) and systemic administration, are unsuitable for translation into humans; in the latter case because AT2 receptor agonists are blood-brain barrier (BBB) impermeable. To circumvent this problem, in the current study we utilized the nose-to-brain (N2B) route of administration to bypass the BBB and deliver the selective AT2 receptor agonist Compound 21 (C21) to naïve rats or rats that had undergone endothelin 1 (ET-1)-induced ischemic stroke. The results obtained from the present study indicated that C21 applied N2B entered the cerebral cortex and striatum within 30 min in amounts that are therapeutically relevant (8.4-9 nM), regardless of whether BBB was intact or disintegrated. C21 was first applied N2B at 1.5 h after stroke indeed provided neuroprotection, as evidenced by a highly significant, 57% reduction in cerebral infarct size and significant improvements in Bederson and Garcia neurological scores. N2B-administered C21 did not affect blood pressure or heart rate. Thus, these data provide proof-of-principle for the idea that N2B application of an AT2 receptor agonist can exert neuroprotective actions when administered following ischemic stroke. Since N2B delivery of other agents has been shown to be effective in certain human central nervous system diseases, the N2B application of AT2 receptor agonists may become a viable mode of delivering these neuroprotective agents for human ischemic stroke patients.


Assuntos
Encéfalo/metabolismo , Mucosa Nasal/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Acidente Vascular Cerebral/prevenção & controle , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Animais , Isquemia Encefálica/complicações , Infarto Cerebral/prevenção & controle , Vias de Administração de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Receptor Tipo 2 de Angiotensina/metabolismo , Acidente Vascular Cerebral/etiologia , Sulfonamidas/administração & dosagem , Sulfonamidas/sangue , Tiofenos/administração & dosagem , Tiofenos/sangue
9.
Curr Hypertens Rep ; 19(6): 46, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28488048

RESUMO

PURPOSE OF REVIEW: The goal of this review is to assess the evidence that activation of angiotensin type 2 receptors (AT2R) in the brain can lower blood pressure and possibly constitute an endogenous anti-hypertensive mechanism. RECENT FINDINGS: Recent studies that detail the location of AT2R in the brain, particularly within or near cardiovascular control centers, mesh well with findings from pharmacological and gene transfer studies which demonstrate that activation of central AT2R can influence cardiovascular regulation. Collectively, these studies indicate that selective activation of brain AT2R causes moderate decreases in blood pressure in normal animals and more profound anti-hypertensive effects, along with restoration of baroreflex function, in rodent models of neurogenic hypertension. These findings have opened the door to studies that can (i) assess the role of specific AT2R neuron populations in depressing blood pressure, (ii) determine the relevance of such mechanisms, and (iii) investigate interactions between AT2R and depressor angiotensin-(1-7)/Mas mechanisms in the brain.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/fisiopatologia , Hipertensão/fisiopatologia , Receptor Tipo 2 de Angiotensina/metabolismo , Animais , Humanos , Receptor Tipo 2 de Angiotensina/fisiologia
10.
Diabetologia ; 59(8): 1778-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27168137

RESUMO

AIMS/HYPOTHESIS: Angiotensin II is well-recognised to be a key mediator in driving the pathological events of diabetes-associated atherosclerosis via signalling through its angiotensin II type 1 receptor (AT1R) subtype. However, its actions via the angiotensin II type 2 receptor (AT2R) subtype are still poorly understood. This study is the first to investigate the role of the novel selective AT2R agonist, Compound 21 (C21) in an experimental model of diabetes-associated atherosclerosis (DAA). METHODS: Streptozotocin-induced diabetic Apoe-knockout mice were treated with vehicle (0.1 mol/l citrate buffer), C21 (1 mg/kg per day), candesartan cilexetil (4 mg/kg per day) or C21 + candesartan cilexetil over a 20 week period. In vitro models of DAA using human aortic endothelial cells and monocyte cultures treated with C21 were also performed. At the end of the experiments, assessment of plaque content and markers of oxidative stress, inflammation and fibrosis were conducted. RESULTS: C21 treatment significantly attenuated aortic plaque deposition in a mouse model of DAA in vivo, in association with a decreased infiltration of macrophages and mediators of inflammation, oxidative stress and fibrosis. On the other hand, combination therapy with C21 and candesartan (AT1R antagonist) appeared to have a limited additive effect in attenuating the pathology of DAA when compared with either treatment alone. Similarly, C21 was found to confer profound anti-atherosclerotic actions at the in vitro level, particularly in the setting of hyperglycaemia. Strikingly, these atheroprotective actions of C21 were completely blocked by the AT2R antagonist PD123319. CONCLUSIONS/INTERPRETATION: Taken together, these findings provide novel mechanistic and potential therapeutic insights into C21 as a monotherapy agent against DAA.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/uso terapêutico , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Receptor Tipo 2 de Angiotensina/metabolismo , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Benzimidazóis/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tetrazóis/uso terapêutico
11.
Clin Sci (Lond) ; 128(9): 567-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25487516

RESUMO

The presence of angiotensin type 2 (AT2) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT2 receptor.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leiomiossarcoma/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Neoplasias Uterinas/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Proliferação de Células , Feminino , Humanos , Leiomiossarcoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Permeabilidade , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Neoplasias Uterinas/patologia
12.
Curr Hypertens Rep ; 16(2): 416, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414230

RESUMO

The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.


Assuntos
Hipertensão/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Sistema Renina-Angiotensina/genética , Animais , Modelos Animais de Doenças , Humanos , Hipertensão/genética , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/efeitos dos fármacos
14.
Clin Exp Pharmacol Physiol ; 40(8): 580-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23735163

RESUMO

In recent years it has been firmly established that apart from the classic renin-angiotensin system (RAS) comprising angiotensin (Ang) II, angiotensin converting enzyme (ACE; responsible for AngII generation) and the angiotensin AT1 receptor (AT1 R), there also exist protective arms of the RAS that comprise the angiotensin AT2 receptor (AT2 R), Ang-(1-7), ACE2 (mainly responsible for Ang-(1-7) synthesis) and Mas, the receptor for Ang-(1-7). Stimulation of AT2 R promotes neuronal differentiation, neurite outgrowth and axonal regeneration, which results in an acceleration of repair and improved functional outcome after injury of peripheral nerves or the spinal cord. Stimulation of AT2 R and the receptor Mas has been shown to reduce infarct size and ameliorate neurological deficits in various animal models of stroke. The underlying mechanisms of action are comprised of activation of direct neurotrophic, anti-inflammatory and anti-oxidant pathways, as well as the augmentation of cerebral blood flow. Cognitive function is improved by AT2 R stimulation due, at least in part, to increased cerebral blood flow. There is indirect evidence that Ang-(1-7) could also play a role in protection against cognitive decline, but studies confirming this have not yet been published. In view of the data reviewed in this article, it can be assumed that the protective arms of the RAS are putative targets in the treatment of neurological diseases, which involve tissue damage or cognitive impairment.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Renina-Angiotensina/fisiologia , Regulação da Expressão Gênica , Humanos , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo
15.
Cell Metab ; 5(1): 7-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17189202

RESUMO

A crosstransplantation study between genetically matched angiotensin AT1 receptor knockout and wild-type mice revealed that renal AT1 receptors are required for the development of angiotensin II-induced hypertension (). However, in this experimental setting, hypertension-related left ventricular hypertrophy seemed to depend on blood pressure elevation rather than on the expression of AT1 receptors in the heart.


Assuntos
Angiotensina II/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Animais , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Transplante de Rim , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
16.
Curr Opin Nephrol Hypertens ; 21(2): 142-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22257799

RESUMO

PURPOSE OF REVIEW: Research about the angiotensin AT2 receptor (AT2R) has been hampered in the past by the lack of a specific and selective agonist with in-vivo stability. Such an eagerly awaited agonist, compound 21, has recently become available, giving momentum to AT2R research which so far has resulted in 14 original publications. This article is intending to review those publications which address AT2R function by direct in-vivo stimulation instead of indirect approaches such as receptor blockade or genetic alteration of AT2R expression. RECENT FINDINGS: Studies reviewed in this article looked at the effect of AT2R stimulation in disease models of hypertension, renal disease, stroke, Alzheimer's disease and myocardial infarction. AT2R stimulation does not have an antihypertensive effect, but promoted tissue protection in all models in which it was tested. Antiinflammation and antiapoptosis seem important features of the AT2R underlying improved outcome in experimental disease models. SUMMARY: Availability of nonpeptidic, orally active AT2R agonists will facilitate future AT2R research and hopefully contribute to the clarification of many still open questions regarding AT2R signalling and function. Furthermore, AT2R agonists represent a potential novel class of drugs and are expected to enter a phase I clinical study in 2012.


Assuntos
Anti-Hipertensivos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Hipertensão/fisiopatologia , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Anti-Hipertensivos/uso terapêutico , Vasos Sanguíneos/patologia , Isquemia Encefálica/tratamento farmacológico , Cognição/efeitos dos fármacos , Hipertensão/complicações , Inflamação/fisiopatologia , Nefropatias/complicações , Nefropatias/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Transdução de Sinais
17.
J Immunol ; 185(10): 6286-93, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20935205

RESUMO

Emerging evidence suggests a cardioprotective role of the angiotensin AT2R, albeit the underlying cellular mechanisms are not well understood. We aimed in this article to elucidate a potential role of cardiac angiotensin AT2R in regulating cellular immune response to ischemic heart injury. Seven days after myocardial infarction in rats, double-immunofluorescence staining showed that AT2R was detected in a fraction of CD8(+) T cells infiltrating in the peri-infarct myocardium. We developed a method that allowed the isolation of myocardial infiltrating CD8(+)AT2R(+) T cells using modified MACS, and further characterization and purification with flow cytometry. Although the CD8(+)AT2R(-) T cells exhibited potent cytotoxicity to both adult and fetal cardiomyocytes (CMs), the CD8(+)AT2R(+) T cells were noncytotoxic to these CMs. The CD8(+)AT2R(+) T cells were characterized by upregulated IL-10 and downregulated IL-2 and INF-γ expression when compared with CD8(+)AT2R(-) T cells. We further showed that IL-10 gene expression was enhanced in CD8(+) T cells on in vitro AT2R stimulation. Importantly, in vivo AT2R activation engendered an increment of CD8(+)AT2R(+) T cells and IL-10 production in the ischemic myocardium. In addition, intramyocardial transplantation of CD8(+)AT2R(+) T cells (versus CD8(+)AT2R(-)) led to reduced ischemic heart injury. Moreover, the CD8(+)AT2R(+) T cell population was also demonstrated in human peripheral blood. Thus, we have defined the cardioprotective CD8(+)AT2R(+) T cell population, which increases during ischemic heart injury and contributes to maintaining CM viability and providing IL-10, hence revealing an AT2R-mediated cellular mechanism in modulating adaptive immune response in the heart.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/biossíntese , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Receptor Tipo 2 de Angiotensina/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Imunofluorescência , Expressão Gênica , Interleucina-10/imunologia , Masculino , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Receptor Tipo 2 de Angiotensina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia
18.
Front Immunol ; 13: 921488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874732

RESUMO

The angiotensin AT2 receptor (AT2R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT2R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT2R-stimulation with the selective non-peptide AT2R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4+CD25+FoxP3+ regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4+FoxP3+ cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4+IL-17A+ and CD4+IFN-gamma+ T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT2R-stimulation promotes the expansion of CD4+ regulatory T cells and suppresses IL-17A production. Thus, AT2R-stimulation may represent an attractive treatment strategy for arthritis.


Assuntos
Artrite Experimental , Receptor Tipo 2 de Angiotensina , Linfócitos T Reguladores , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Imidazóis , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos DBA , RNA Mensageiro/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sulfonamidas , Linfócitos T Reguladores/imunologia , Tiofenos , Regulação para Cima
19.
Sci Rep ; 12(1): 14280, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995819

RESUMO

Antagonism of the angiotensin II type 1 receptor (AT1) improves neurological function and reduces brain damage after experimental traumatic brain injury (TBI), which may be partly a result of enhanced indirect angiotensin II type 2 receptor (AT2) stimulation. AT2 stimulation was demonstrated to be neuroprotective via anti-inflammatory, vasodilatory, and neuroregenerative mechanisms in experimental cerebral pathology models. We recently demonstrated an upregulation of AT2 after TBI suggesting a protective mechanism. The present study investigated the effect of post-traumatic (5 days after TBI) AT2 activation via high and low doses of a selective AT2 agonist, compound 21 (C21), compared to vehicle-treated controls. No differences in the extent of the TBI-induced lesions were found between both doses of C21 and the controls. We then tested AT2-knockdown animals for secondary brain damage after experimental TBI. Lesion volume and neurological outcomes in AT2-deficient mice were similar to those in wild-type control mice at both 24 h and 5 days post-trauma. Thus, in contrast to AT1 antagonism, AT2 modulation does not influence the initial pathophysiological mechanisms of TBI in the first 5 days after the insult, indicating that AT2 plays only a minor role in the early phase following trauma-induced brain damage.


Assuntos
Lesões Encefálicas Traumáticas , Receptor Tipo 2 de Angiotensina , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Imidazóis/farmacologia , Masculino , Camundongos , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina/metabolismo , Sulfonamidas/farmacologia , Tiofenos/farmacologia
20.
J Am Heart Assoc ; 11(17): e026143, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36000426

RESUMO

Background Published randomized controlled trials are underpowered for binary clinical end points to assess the safety and efficacy of renin-angiotensin system inhibitors (RASi) in adults with COVID-19. We therefore performed a meta-analysis to assess the safety and efficacy of RASi in adults with COVID-19. Methods and Results MEDLINE, EMBASE, ClinicalTrials.gov, and the Cochrane Controlled Trial Register were searched for randomized controlled trials that randomly assigned patients with COVID-19 to RASi continuation/commencement versus no RASi therapy. The primary outcome was all-cause mortality at ≤30 days. A total of 14 randomized controlled trials met the inclusion criteria and enrolled 1838 participants (aged 59 years, 58% men, mean follow-up 26 days). Of the trials, 11 contributed data. We found no effect of RASi versus control on all-cause mortality (7.2% versus 7.5%; relative risk [RR], 0.95; [95% CI, 0.69-1.30]) either overall or in subgroups defined by COVID-19 severity or trial type. Network meta-analysis identified no difference between angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers. RASi users had a nonsignificant reduction in acute myocardial infarction (2.1% versus 3.6%; RR, 0.59; [95% CI, 0.33-1.06]), but increased risk of acute kidney injury (7.0% versus 3.6%; RR, 1.82; [95% CI, 1.05-3.16]), in trials that initiated and continued RASi. There was no increase in need for dialysis or differences in congestive cardiac failure, cerebrovascular events, venous thromboembolism, hospitalization, intensive care admission, inotropes, or mechanical ventilation. Conclusions This meta-analysis of randomized controlled trials evaluating angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers versus control in patients with COVID-19 found no difference in all-cause mortality, a borderline decrease in myocardial infarction, and an increased risk of acute kidney injury with RASi. Our findings provide strong evidence that RASi can be used safely in patients with COVID-19.


Assuntos
Injúria Renal Aguda , COVID-19 , Hipertensão , Infarto do Miocárdio , Injúria Renal Aguda/induzido quimicamente , Adulto , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Anti-Hipertensivos/uso terapêutico , Feminino , Humanos , Masculino , Infarto do Miocárdio/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema Renina-Angiotensina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA