Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(21): eade9071, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224261

RESUMO

The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-µm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.

2.
Prog Neurobiol ; 161: 1-22, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29199137

RESUMO

Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.


Assuntos
Rede Nervosa/fisiopatologia , Vias Neurais/fisiologia , Nociceptividade/fisiologia , Dor/patologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Animais , Humanos , Rede Nervosa/patologia
3.
Neurophotonics ; 5(1): 011018, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29057285

RESUMO

Currently, there is no method for providing a nonverbal objective assessment of pain. Recent work using functional near-infrared spectroscopy (fNIRS) has revealed its potential for objective measures. We conducted two fNIRS scans separated by 30 min and measured the hemodynamic response to the electrical noxious and innocuous stimuli over the anterior prefrontal cortex (aPFC) in 14 subjects. Based on the estimated hemodynamic response functions (HRFs), we first evaluated the test-retest reliability of using fNIRS in measuring the pain response over the aPFC. We then proposed a general linear model (GLM)-based detection model that employs the subject-specific HRFs from the first scan to detect the pain response in the second scan. Our results indicate that fNIRS has a reasonable reliability in detecting the hemodynamic changes associated with noxious events, especially in the medial portion of the aPFC. Compared with a standard HRF with a fixed shape, including the subject-specific HRFs in the GLM allows for a significant improvement in the detection sensitivity of aPFC pain response. This study supports the potential application of individualized analysis in using fNIRS and provides a robust model to perform objective determination of pain perception.

4.
Front Hum Neurosci ; 12: 394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349466

RESUMO

Functional near infrared spectroscopy (fNIRS) is a non-invasive optical imaging method that provides continuous measure of cortical brain functions. One application has been its use in the evaluation of pain. Previous studies have delineated a deoxygenation process associated with pain in the medial anterior prefrontal region, more specifically, the medial Brodmann Area 10 (BA 10). Such response to painful stimuli has been consistently observed in awake, sedated and anesthetized patients. In this study, we administered oral morphine (15 mg) or placebo to 14 healthy male volunteers with no history of pain or opioid abuse in a crossover double blind design, and performed fNIRS scans prior to and after the administration to assess the effect of morphine on the medial BA 10 pain signal. Morphine is the gold standard for inhibiting nociceptive processing, most well described for brain effects on sensory and emotional regions including the insula, the somatosensory cortex (the primary somatosensory cortex, S1, and the secondary somatosensory cortex, S2), and the anterior cingulate cortex (ACC). Our results showed an attenuation effect of morphine on the fNIRS-measured pain signal in the medial BA 10, as well as in the contralateral S1 (although observed in a smaller number of subjects). Notably, the extent of signal attenuation corresponded with the temporal profile of the reported plasma concentration for the drug. No clear attenuation by morphine on the medial BA 10 response to innocuous stimuli was observed. These results provide further evidence for the role of medial BA 10 in the processing of pain, and also suggest that fNIRS may be used as an objective measure of drug-brain profiles independent of subjective reports.

5.
PLoS One ; 11(11): e0165226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27806119

RESUMO

The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.


Assuntos
Lobo Frontal/fisiopatologia , Nociceptividade/fisiologia , Dor Nociceptiva/diagnóstico por imagem , Adulto , Mapeamento Encefálico/métodos , Lobo Frontal/diagnóstico por imagem , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Masculino , Dor Nociceptiva/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem
6.
PLoS One ; 11(7): e0158975, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415436

RESUMO

The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia.


Assuntos
Anestesia Geral , Arritmias Cardíacas/cirurgia , Ablação por Cateter , Córtex Cerebral/diagnóstico por imagem , Dor/diagnóstico por imagem , Adolescente , Anestesia Geral/métodos , Ablação por Cateter/métodos , Córtex Cerebral/fisiopatologia , Criança , Feminino , Neuroimagem Funcional/métodos , Hemodinâmica/fisiologia , Humanos , Masculino , Dor/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA