Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 3(3): e42, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17367210

RESUMO

A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential targets for anti-cryptococcal therapy.


Assuntos
Cryptococcus neoformans/genética , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Regulação Fúngica da Expressão Gênica , Transcrição Gênica , Sequência de Bases , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , AMP Cíclico/fisiologia , Retículo Endoplasmático/metabolismo , Glicerol/farmacologia , Temperatura Alta , Cloreto de Lítio/farmacologia , Melaninas/biossíntese , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos/fisiologia , Fosfolipídeos/biossíntese , Superóxido Dismutase/genética , Virulência
2.
Eukaryot Cell ; 4(12): 2029-43, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16339721

RESUMO

The switch from budding to filamentous growth is a key aspect of invasive growth and virulence for the fungal phytopathogen Ustilago maydis. The cyclic AMP (cAMP) signaling pathway regulates dimorphism in U. maydis, as demonstrated by the phenotypes of mutants with defects in protein kinase A (PKA). Specifically, a mutant lacking the regulatory subunit of PKA encoded by the ubc1 gene displays a multiple-budded phenotype and fails to incite disease symptoms, although proliferation does occur in the plant host. A mutant with a defect in a catalytic subunit of PKA, encoded by adr1, has a constitutively filamentous phenotype and is nonpathogenic. We employed serial analysis of gene expression to examine the transcriptomes of a wild-type strain and the ubc1 and adr1 mutants to further define the role of PKA in U. maydis. The mutants displayed changes in the transcript levels for genes encoding ribosomal proteins, genes regulated by the b mating-type proteins, and genes for metabolic functions. Importantly, the ubc1 mutant displayed elevated transcript levels for genes involved in phosphate acquisition and storage, thus revealing a connection between cAMP and phosphate metabolism. Further experimentation indicated a phosphate storage defect and elevated acid phosphatase activity for the ubc1 mutant. Elevated phosphate levels in culture media also enhanced the filamentous growth of wild-type cells in response to lipids, a finding consistent with PKA regulation of morphogenesis in U. maydis. Overall, these findings extend our understanding of cAMP signaling in U. maydis and reveal a link between phosphate metabolism and morphogenesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfatos/metabolismo , Ribossomos/metabolismo , Ustilago/enzimologia , Ustilago/metabolismo , Fosfatase Ácida/análise , Meios de Cultura/análise , Proteínas Quinases Dependentes de AMP Cíclico/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes Fúngicos , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribossomos/genética , Transcrição Gênica , Ustilago/citologia , Ustilago/genética , Ustilago/crescimento & desenvolvimento
3.
Mol Microbiol ; 55(5): 1452-72, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15720553

RESUMO

Cryptococcus neoformans is the leading cause of fungal meningitis in humans. Production of a polysaccharide capsule is a key virulence property for the fungus and capsule synthesis is regulated by iron levels. Given that iron acquisition is an important aspect of virulence for many pathogens, we employed serial analysis of gene expression (SAGE) to examine the transcriptome under iron-limiting and iron-replete conditions. Initially, we demonstrated by SAGE and Northern analysis that iron limitation results in an elevated transcript level for the CAP60 gene that is required for capsule production. We also identified genes encoding putative components for iron transport and homeostasis, including the FTR1 (iron permease) gene, with higher transcript levels in the low-iron condition. An FTR1 disruption mutant grows more slowly than wild-type cells in low-iron medium, and shows delayed growth and altered capsule regulation in iron-replete medium. Iron deprivation also resulted in elevated SAGE tags for putative extracellular mannoproteins and the GPI8 gene encoding a glycosylphosphatidylinositol (GPI) transamidase. The GPI8 gene appears to be essential while disruption of the CIG1 gene encoding a mannoprotein resulted in impaired growth in low-iron medium and altered capsule response to the iron-replete condition. Additionally, we found that iron-replete conditions led to elevated transcripts for genes for iron storage, nitrogen metabolism, glycolysis, mitochondrial function, lipid metabolism and calmodulin-calcineurin signalling. Overall, these studies provide the first view of the C. neoformans transcriptional response to different iron levels.


Assuntos
Cápsulas Bacterianas/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Ferro/farmacologia , Transcrição Gênica/efeitos dos fármacos , Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/química , Virulência/genética
4.
Genome Res ; 12(9): 1386-400, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213776

RESUMO

The basidiomycete fungus Cryptococcus neoformans is an opportunistic pathogen of worldwide importance that causes meningitis, leading to death in immunocompromised individuals. Unlike many basidiomycete fungi, C. neoformans is thermotolerant, and its ability to grow at 37 degrees C is considered to be a virulence factor. We used serial analysis of gene expression (SAGE) to characterize the transcriptomes of C. neoformans strains that represent two varieties with different polysaccharide capsule serotypes. These include a serotype D strain of the C. neoformans variety neoformans and a serotype A strain of variety grubii. In this report, we describe the construction and characterization of SAGE libraries from each strain grown at 25 degrees C and 37 degrees C. The SAGE data reveal transcriptome differences between the two strains, even at this early stage of analysis, and identify sets of genes with higher transcript levels at 25 degrees C or 37 degrees C. Notably, growth at the lower temperature increased transcript levels for histone genes, indicating a general influence of temperature on chromatin structure. At 37 degrees C, we noted elevated transcript levels for several genes encoding heat shock proteins and translation machinery. Some of these genes may play a role in temperature-regulated phenotypes in C. neoformans, such as the adaptation of the fungus to growth in the host and the dimorphic transition between budding and filamentous growth. Overall, this work provides the most comprehensive gene expression data available for C. neoformans; this information will be a critical resource both for gene discovery and genome annotation in this pathogen.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Regulação Fúngica da Expressão Gênica , Sorotipagem , Temperatura , Transcrição Gênica/genética , Northern Blotting/métodos , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cryptococcus neoformans/classificação , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Técnicas de Tipagem Micológica/métodos , Fenótipo , RNA Fúngico/análise , Sitios de Sequências Rotuladas , Sorotipagem/métodos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA