RESUMO
Computed tomography (CT)-guided percutaneous biopsies play an important role in the diagnostic workup of liver lesions. Because radiation dose accumulates rapidly due to repeated image acquisition in a relatively small scan area, analysing radiation exposure is critical for improving radiation protection of CT-guided interventions. The aim of this study was to assess the radiation dose of CT-guided liver biopsies and the influence of lesion parameters, and to establish a local diagnostic reference level (DRL). In this observational retrospective cohort study, dose data of 60 CT-guided liver biopsies between September 2016 and July 2017 were analysed. Radiation exposure was reported for volume-weighted CT dose index (CTDIvol), size-specific dose estimate (SSDE), dose-length product (DLP) and effective dose (ED). Radiation dose of CT-guided liver biopsy was (median (interquartile range)): CTDIvol9.91 mGy (8.33-11.45 mGy), SSDE 10.42 mGy (9.39-11.70 mGy), DLP 542 mGy cm (410-733 mGy cm), ED 8.52 mSv (7.17-13.25 mSv). Radiation exposure was significantly higher in biopsies of deep liver lesions compared to superficial lesions (DLP 679 ± 285 mGy cm vs. 497 ± 167 mGy cm,p= 0.0046). No significant dose differences were observed for differences in lesion or needle size. With helical CT spirals additional to the biopsy-guiding axial CT scans, radiation exposure was significantly increased: 797 ± 287 mGy cm vs. 495 ± 162 mGy cm,p< 0.0001. The local DRL is CTDIvol9.91 mGy, DLP 542 mGy cm. Radiation dose is significantly increased in biopsies of deeper liver lesions compared with superficial lesions. Interventions with additional biopsy-guiding CT spirals lead to higher radiation doses. This study provides a detailed analysis of local radiation doses for CT-guided liver biopsies and provides a benchmark for optimising radiation protection in interventional radiology.