Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Med ; 201(9): 1375-83, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15851487

RESUMO

B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.


Assuntos
Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteoglicanas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Linhagem Celular , Movimento Celular/genética , Proliferação de Células , Citometria de Fluxo , Heparina/metabolismo , Humanos , Imunoprecipitação , Camundongos , Plasmócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção , Proteína Transmembrana Ativadora e Interagente do CAML , Fator de Necrose Tumoral alfa/metabolismo
2.
Front Immunol ; 3: 331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162549

RESUMO

Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

3.
Blood ; 111(4): 2073-82, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18029555

RESUMO

Division and proliferation of dendritic cells (DCs) have been proposed to contribute to homeostasis and to prolonged antigen presentation. Whether abnormal proliferation of dendritic cells causes Langerhans cell histiocytosis (LCH) is a highly debated topic. Transgenic expression of simian virus 40 (SV40) T antigens in mature DCs allowed their transformation in vivo while maintaining their phenotype, function, and maturation capacity. The transformed cells were differentiated splenic CD8 alpha-positive conventional dendritic cells with increased Langerin expression. Their selective transformation was correlated with higher steady-state cycling compared with CD8 alpha-negative DCs in wild-type and transgenic mice. Mice developed a DC disease involving the spleen, liver, bone marrow, thymus, and mesenteric lymph node. Surprisingly, lesions displayed key immunohistologic features of Langerhans cell histiocytosis, including expression of Langerin and absence of the abnormal mitoses observed in Langerhans cell sarcomas. Our results demonstrate that a transgenic mouse model with striking similarities to aggressive forms of multisystem histiocytosis, such as the Letterer-Siwe syndrome, can be obtained by transformation of conventional DCs. These findings suggest that conventional DCs may cause some human multisystem LCH. They can reveal shared molecular pathways for human histiocytosis between humans and mice.


Assuntos
Antígenos CD8/imunologia , Células Dendríticas/imunologia , Histiocitose de Células de Langerhans/imunologia , Ativação Linfocitária/imunologia , Animais , Antígeno CD11c/genética , Primers do DNA , Marcadores Genéticos , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Eur J Immunol ; 34(2): 509-18, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14768056

RESUMO

The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Fator Ativador de Células B , Linfócitos B/citologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA