Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Indian J Biochem Biophys ; 50(5): 387-401, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24772960

RESUMO

The purpose of this study was to elucidate the mechanism of the airborne poultry dust (particulate matter, PM)-induced respiratory tract inflammation, a common symptom in agricultural respiratory diseases. The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). Human lung epithelial cells (A549) in culture were treated with the poultry PM (0.1-1.0 mg) for different lengths of time, following which PLA2 activity, release of eicosanoids and secretion of IL-8 in cells were determined. Poultry PM (1.0 mg/ml) caused a significant activation of PLA2 in a time-dependent manner (15-60 min), which was significantly attenuated by the calcium-chelating agents, cPLA2-specific inhibitor (AACOCF3) and antioxidant (vitamin C) in A549 cells. Poultry PM also significantly induced the release of COX- and LOX-catalyzed eicosanoids (prostaglandins, thromboxane A2 and leukotrienes B4 and C4) and upstream activation of AA LOX in the cells. Poultry PM also significantly induced release of IL-8 by the cells in a dose- and time-dependent manner, which was significantly attenuated by the calcium chelating agents, antioxidants and COX- and LOX-specific inhibitors. The current study for the first time revealed that the poultry PM-induced IL-8 release from the respiratory epithelial cells was regulated upstream by reactive oxygen species, cPLA2-, COX- and LOX-derived eicosanoid lipid signal mediators.


Assuntos
Agricultura , Citocinas/metabolismo , Eicosanoides/metabolismo , Material Particulado/farmacologia , Mucosa Respiratória/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Biocatálise , Linhagem Celular , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-8/metabolismo , Lipoxigenases/metabolismo , Material Particulado/química , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Fosfolipases A2 Citosólicas/metabolismo , Aves Domésticas , Prostaglandina-Endoperóxido Sintases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Solventes/química , Fatores de Tempo
2.
Cell Signal ; 18(9): 1396-407, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16376521

RESUMO

Our earlier studies have shown that vitamin C at pharmacological doses (mM) induces loss of redox-dependent viability in bovine lung microvascular endothelial cells (BLMVECs) that is mediated by oxidative stress. Therefore, here, we investigated the vitamin C-induced activation of the lipid signaling enzyme, phospholipase D (PLD) in BLMVECs. Monolayer cultures of BLMVECs were treated with vitamin C (0-10 mM) for different time periods (0-2 h) and the activity of PLD was determined. Vitamin C induced activation of PLD in BLMVECs in a time- and dose-dependent fashion that was significantly attenuated by antioxidants, p38 mitogen-activated protein kinase (p38 MAPK)-specific inhibitor (SB203580), extracellular signal-regulated protein kinase (ERK)-specific inhibitor (PD98059), and transient transfection of cells with dominant-negative (DN)-p38 MAPK and DN-ERK1/ERK2. Vitamin C also induced phosphorylation and enhanced the activities of p38 MAPK and ERK in BLMVECs in a time-dependent fashion. It was also evident that vitamin C induced translocation of PLD(1) and PLD(2), association of p38 MAPK and ERK with PLD(1) and PLD(2), threonine phosphorylation of PLD(1) and PLD(2) and SB203580- and PD98059-inhibitable threonine phosphorylation of PLD(1) in BLMVECs. Transient transfection of BLMVECs with DN-p38 MAPK and DN-ERK1/ERK2 resulted in marked attenuation of vitamin C-induced phosphorylation of threonine in PLD(1) and PLD(2). We, for the first time, showed that vitamin C at pharmacological doses, activated PLD in the lung microvascular ECs through oxidative stress and MAPK activation.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfolipase D/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Ativação Enzimática , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfolipase D/genética , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Treonina/metabolismo
3.
Toxicol Mech Methods ; 17(9): 541-57, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-20020881

RESUMO

ABSTRACT Currently, mercury has been identified as a risk factor in cardiovascular diseases among humans. Here, we tested our hypothesis that mercury modulates the activity of the vascular endothelial cell (EC) lipid signaling enzyme phospholipase A(2) (PLA(2)), which is an important player in the EC barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling of membrane phospholipids with [(3)H]arachidonic acid (AA), were exposed to the inorganic form of mercury, mercury chloride, and the release of free AA (index of PLA(2) activity) and formation of AA metabolites were determined by liquid scintillation counting and enzyme immunoassay, respectively. Mercury chloride significantly activated PLA(2) in BPAECs in a dose-dependent (0 to 50 muM) and time-dependent (0 to 120 min) fashion. Metal chelators significantly attenuated mercury-induced PLA(2) activation, suggesting that cellular mercury-ligand interaction is required for the enzyme activation and that chelators are suitable blockers for mercury-induced PLA(2) activation in ECs. Sulfhydryl (thiol-protective) agents, calcium chelating agents, and cPLA(2)-specific inhibitor also significantly attenuated the mercury-induced PLA(2), suggesting the role of thiol and calcium in the activation of cPLA(2) in BPAECs. Significant formation of AA metabolites, including the release of total prostaglandins, thromboxane B(2), and 8-isoprostane, were observed in BPAECs following their exposure to mercury chloride. Mercury chloride induced cytotoxicity as observed by the altered cell morphology and enhanced trypan blue uptake, which was attenuated by the cPLA(2) inhibitor AACOCF(3). The results of this study revealed that inorganic mercury-induced PLA(2) activation through the thiol and calcium signaling and the formation of bioactive AA metabolites further demonstrated the association of PLA(2) with the cytotoxicity of mercury in ECs. Overall, the results of the current study underscore the importance of PLA(2) signaling in mercury-induced endothelial dysfunctions.

4.
Mol Cell Biochem ; 315(1-2): 97-112, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18496733

RESUMO

We have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A(2) (PLA(2)), another signaling phospholipase, and the modulation of PLD activation by PLA(2) in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA(2) in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations. The results revealed that vitamin C (3-10 mM) significantly activated PLA(2) starting at 30 min; however, the activation of PLD resulted only at 120 min of treatment of cells under identical conditions. Further studies were conducted utilizing specific pharmacological agents to understand the mechanism(s) of activation of PLA(2) and PLD in BLMVECs treated with vitamin C (5 mM) for 120 min. Antioxidants, calcium chelators, iron chelators, and PLA(2) inhibitors offered attenuation of the vitamin C-induced activation of both PLA(2) and PLD in the cells. Vitamin C was also observed to significantly induce the formation and release of the cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites and to activate the AA LOX in BLMVECs. The inhibitors of PLA(2), COX, and LOX were observed to effectively and significantly attenuate the vitamin C-induced PLD activation in BLMVECs. For the first time, the results of the present study revealed that the vitamin C-induced activation of PLD in vascular ECs was regulated by the upstream activation of PLA(2), COX, and LOX through the formation of AA metabolites involving oxidative stress, calcium, and iron.


Assuntos
Ácido Ascórbico/farmacologia , Células Endoteliais/enzimologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoxigenase/metabolismo , Fosfolipase D/metabolismo , Fosfolipases A2/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Catálise/efeitos dos fármacos , Bovinos , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quelantes de Ferro/farmacologia , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA