Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419082

RESUMO

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/farmacologia , Pirróis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Corpos Embrioides/citologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Estrutura Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fator de Transcrição PAX6/genética , Polímeros/química , Pirróis/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
2.
J Phys Chem A ; 122(48): 9298-9306, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30418028

RESUMO

Polypyrrole nanotubes rank among the most conducting forms of organic semiconductors. They are prepared by the oxidation of pyrrole in the presence of methyl orange. Other organic dyes, viz. ethyl orange, Acid Blue 25, and Acid Blue 129, have been used in the present study to prepare globules or nanofibers. The resulting polypyrroles were studied in detail by Raman spectroscopy. The apparent paradox when a dye contribution to spectra is absent with 785 nm excitation line and present with shorter wavelengths is explained by the resonance character of the Raman scattering, which allows the separation of the contributions from the polypyrrole surface and from the bulk. These differ depending on the laser excitation wavelength and the position of absorption maximum of the individual dyes in ultraviolet-visible spectra and affect both the laser-penetration depth and observation of the resonance effect. The spectra are discussed in terms of different ordering of polymer chains in individual morphologies. The correlation between conductivity, surface areas, and the proportions of ordered and disordered polypyrrole phases at the surface and in the interior of nanostructures is proposed and established using resonance Raman spectroscopy.

3.
J Phys Chem A ; 122(49): 9492-9497, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30462508

RESUMO

The blue thin polyaniline base film changes its color to green after immersion of the film into dibutyl phosphonate. The green color of the film converts to a greenish-blue after heating to 200 °C in air, which is characteristic for the protonated conducting form of polyaniline. This is in contrast to the "standard" polyaniline hydrochloride, which is transformed into a cross-linked polyaniline base under such conditions. To explain this unexpected observation, the interaction of polyaniline base with dibutyl phosphonate at ambient conditions and after heating to 200 °C was studied using UV-visible, FTIR and Raman spectroscopies. On the basis of these studies, we propose that the dibutyl phosphite tautomeric form of dibutyl phosphonate, which interacts with polyaniline base at 20 °C, converts to the oxidized form, dibutyl phosphate, at 200 °C and subsequently protonates the film. Quantum-chemical modeling of the interaction of polyaniline base with dibutyl phosphite and dibutyl phosphate supports this explanation.

4.
Sensors (Basel) ; 16(4)2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070612

RESUMO

The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

5.
Sensors (Basel) ; 16(11)2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27854279

RESUMO

Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization.

6.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850311

RESUMO

The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.

7.
Nanomaterials (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887944

RESUMO

This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm-1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1-2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials.

8.
Materials (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38204007

RESUMO

Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.

9.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236189

RESUMO

Water pollution by organic dyes, and its remediation, is an important environmental issue associated with ever-increasing scientific interest. Conducting polymers have recently come to the forefront as advanced agents for removing dye. The present review reports on the progress represented by the literature published in 2020-2022 on the application of conducting polymers and their composites in the removal of dyes from aqueous media. Two composites, incorporating the most important polymers, polyaniline, and polypyrrole, have been used as efficient dye adsorbents or photocatalysts of dye decomposition. The recent application trends are outlined, and future uses also exploiting the electrical and electrochemical properties of conducting polymers are offered.

10.
J Hazard Mater ; 435: 129004, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500341

RESUMO

Fabrication of adsorbents with excellent adsorption capacity, outstanding stability, easy separation ability, excellent recyclability and widely generality for organic dyes removal from wastewater remains challenging. Herein, three-dimensional polyaniline/poly(vinyl alcohol)/montmorillonite (PANI/PVAL/MMT) hybrid aerogels with easy separation performance and highly effective reusable adsorption on both anionic and cationic dyes were fabricated by a simple in-situ polymerization method. As-prepared hybrid aerogels were characterized via infrared and Raman spectra, scanning electron microscopy, energy dispersive spectra mapping, small and wide-angle X-ray scattering, thermogravimetric analysis, mercury intrusion porosimetry and elemental analysis. The results showed that MMT particles were successfully incorporated into aerogel matrix. Well-defined hierarchical structure, where PANI nanofibers are coated on the skeleton wall, can be observed for PANI/PVAL/MMT when the incorporation amount of MMT was around 11.1 wt%. The adsorption performance of as-prepared hybrid aerogels on both anionic and cationic dyes was systemically carried out at different solution pH, adsorbent dosage and initial dye concentration. The data analysis showed that the adsorption process for PVAL/PANI/MMT aerogel for Reactive Black 5, methyl orange and safranin followed Freundlich isotherm and the maximum experimental adsorption capacities were found to be 199, 251 and 57.0 mg g-1 at 25 °C, respectively. Mechanism studies indicated that the electrostatic interaction is the main driving force for the adsorption of dyes. The results demonstrated that the fabricated hybrid aerogel is an efficient adsorbent for the removal of both anionic and cationic organic dyes.

11.
ACS Omega ; 6(32): 20895-20901, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423197

RESUMO

Melamine sponges were coated with polypyrrole during the in situ polymerization of pyrrole. The precipitation polymerization was compared with the dispersion mode, that is, with the preparation in the presence of poly(N-vinylpyrrolidone) and nanosilica as colloidal stabilizers. The coating of sponges during the dispersion polymerization leads to the elimination of the undesired polypyrrole precipitate, improved conductivity, and increased specific surface area. The sponges were tested with respect to their conductivity and as pressure-sensitive conducting materials with antibacterial performance.

12.
Carbohydr Polym ; 253: 117244, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278999

RESUMO

Novel composite films combining biocompatible polysaccharides with conducting polyaniline (PANI) were prepared via the in-situ polymerization of aniline hydrochloride in the presence of sodium hyaluronate (SH) or chitosan (CH). The composite films possess very good cytocompatibility in terms of adhesion and proliferation of two lines of human induced pluripotent stem cells (hiPSC). Moreover, the cardiomyogenesis and even formation of beating clusters were successfully induced on the films. The proportion of formed cardiomyocytes demonstrated excellent properties of composites for tissue engineering of stimuli-responsive tissues. The testing also demonstrated antibacterial activity of the films against E. coli and PANI-SH was able to reduce bacterial growth from 2 × 105 to < 1 cfu cm-2. Physicochemical characterization revealed that the presence of polysaccharides did not notably influence conductivities of the composites being ∼1 and ∼2 S cm-1 for PANI-SH and PANI-CH respectively; however, in comparison with neat PANI, it modified their topography making the films smoother with mean surface roughness of 4 (PANI-SH) and 14 nm (PANI-CH). The combination of conductivity, antibacterial activity and mainly cytocompatibility with hiPSC opens wide application potential of these polysaccharide-based composites.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Quitosana/química , Ácido Hialurônico/química , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Nanocompostos/química , Compostos de Anilina/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica , Escherichia coli/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimerização , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Engenharia Tecidual/métodos
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118300, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32278150

RESUMO

Polyaniline is a conducting polymer with an application potential in the field of biomedical engineering. By employing FTIR spectroscopy and conductivity measurements, it has been shown that the oxidation at stoichiometric peroxydisulfate-to-aniline mole ratio 1.25 in the solutions of formic acid in the range 0-10 M provides samples of a moderate conductivity of the orders 0.01-0.1 S cm-1. They consist of polyaniline and aniline oligomers as typical of the aniline oxidation in weak acids. The detailed investigation of the infrared spectra indicates a partial ring-carboxylation of polyaniline at high acid concentrations. The extent of structural defects is higher for a series prepared at over-stoichiometric peroxydisulfate-to-aniline mole ratio 2.5, which provided only non-conducting samples. The reference sample series represented by poly(aniline-co-o-aminobenzoic acid) was also prepared and is used in the discussion of the infrared spectra.

14.
Mater Sci Eng C Mater Biol Appl ; 113: 110986, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487402

RESUMO

Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.


Assuntos
Compostos de Anilina/química , Materiais Biocompatíveis/química , Organofosfonatos/química , Polímeros/química , Pirróis/química , Compostos de Anilina/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Camundongos , Células-Tronco Embrionárias Murinas , Polímeros/farmacologia , Pirróis/farmacologia
15.
J Phys Chem B ; 113(19): 6666-73, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368362

RESUMO

The products obtained within early stages of the oxidative polymerization of aniline in solutions of various weak organic acids or in water, and aniline oligomers produced by the oxidation of aniline and aniline-(15)N in acetic acid (0.4 M) with a limited amount of oxidant were analyzed using 1H, 13C, and 15N 1D and 2D NMR spectroscopy and 1H PFG NMR. Such products are virtually identical in all cases, according to 1H NMR. They are always a mixture of products, among which one of them is prominent. Both native and neutralized forms of the products were examined. As shown by a combination of 1H DQF COSY, 1H NOESY, 1H-(13)C and 1H-(15)N HSQC, and 1H-(13)C and 1H-(15)N HMBC spectra, both forms of this product contain an oligoaniline moiety ended mostly by phenylamino groups. In a significant amount, the chains contain--either as an inner or terminal group--an unexpected six-member ring with an oxygen-containing substituted quinoneimine structure. The most probable structure of the major product is given. The difference between the native and neutralized forms of the product was examined. It is shown that the oligomeric chains, in particular quinoneimine units of the former one, are protonated. Both forms of the product exhibit a slight paramagnetism, and contain about 2x10(-9) mol g(-1) of unpaired electron spins.

16.
J Phys Chem B ; 113(20): 7116-27, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19402689

RESUMO

Self-assembled semiconducting, paramagnetic polyaniline nanotubes have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in aqueous medium in the presence of colloidal silica particles of an average diameter approximately 12 nm, without added acid. The electrical conductivity of polyaniline nanotubes/silica nanocomposites is in the range (3.3-4.0)x10(-3) S cm(-1). The presence of paramagnetic polaronic emeraldine salt form of polyaniline and phenazine units in nanocomposites was proved by FTIR, Raman, and EPR spectroscopies. The influence of the initial silica/aniline weight ratio on the morphology of polyaniline/silica nanocomposites was studied by scanning and transmission electron microscopies. Nanocomposites synthesized by using the initial weight ratio silica/aniline

17.
Nanotechnology ; 20(24): 245601, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471087

RESUMO

Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.


Assuntos
Compostos de Anilina/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
Polymers (Basel) ; 11(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30960346

RESUMO

Today, the application of polyaniline in biomedicine is widely discussed. However, information about impurities released from polyaniline and about the cytotoxicity of its precursors aniline, aniline hydrochloride, and ammonium persulfate are scarce. Therefore, cytotoxicity thresholds for the individual precursors and their combinations were determined (MTT assay) and the type of cell death caused by exposition to the precursors was identified using flow-cytometry. Tests on fibroblasts revealed higher cytotoxicity of ammonium persulfate than aniline hydrochloride. Thanks to the synergic effect, both monomers in combination enhanced their cytotoxicities compared with individual substances. Thereafter, cytotoxicity of polyaniline doped with different acids (sulfuric, nitric, phosphoric, hydrochloric, and methanesulfonic) was determined and correlated with impurities present in respective sample (HPLC). The lowest cytotoxicity showed polyaniline doped with phosphoric acid (followed by sulfuric, methanesulfonic, and nitric acid). Cytotoxicity of polyaniline was mainly attributed to the presence of residual ammonium persulfate and low-molecular-weight polar substances. This is crucial information with respect to the purification of polyaniline and production of its cytocompatible form.

19.
Polymers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861654

RESUMO

Nitrogen-containing carbon derivatives were prepared by the carbonization of poly(aniline-co-p-phenylenediamine) cryogels in inert atmosphere. Lower aniline fraction in the comonomer mixture used for preparation of the cryogels led to the decrease of their thermal stability, a consequent increase of carbonization degree, and less defective structure of carbonized materials. The resulting carbonaceous products had up to 4 orders of magnitude higher specific surface area than their respective cryogel precursors, the highest value 931 m2 g-1 being achieved for carbonized poly(p-phenylenediamine) cryogel. Electrochemical characterization of the carbon derivatives demonstrated that the decrease in aniline concentration during the synthesis of the precursor cryogels led to higher gravimetric capacitance for corresponding carbonized materials. These materials can potentially be used for energy storage applications.

20.
Polymers (Basel) ; 11(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718055

RESUMO

Hemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect. Therefore, sodium dodecylbenzenesulfonate, 2-aminoethane-1-sulfonic acid and N-(2-acetamido)-2-aminoethanesulfonic acid were used for modification of the representative of conducting polymers, polyaniline, and the resulting products were studied in the context of interactions with human blood. The anticoagulation activity was then correlated to surface energy and conductivity of the materials. Results show that anticoagulation activity is highly affected by the presence of suitable functional groups originating from the used heparin-like substances, and by the properties of polyaniline polymer itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA