Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100060

RESUMO

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Assuntos
Interleucina-6 , RNA , Células Endoteliais/metabolismo , Receptor gp130 de Citocina , Endotélio/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
2.
Circulation ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899464

RESUMO

There is significant variability in the efficacy and safety of oral P2Y12 inhibitors, which are used to prevent ischemic outcomes in common diseases such as coronary and peripheral arterial disease and stroke. Clopidogrel, a prodrug, is the most used oral P2Y12 inhibitor and is activated primarily after being metabolized by a highly polymorphic hepatic cytochrome CYP2C219 enzyme. Loss-of-function genetic variants in CYP2C219 are common, can result in decreased active metabolite levels and increased on-treatment platelet aggregation, and are associated with increased ischemic events on clopidogrel therapy. Such patients can be identified by CYP2C19 genetic testing and can be treated with alternative therapy. Conversely, universal use of potent oral P2Y12 inhibitors such as ticagrelor or prasugrel, which are not dependent on CYP2C19 for activation, has been recommended but can result in increased bleeding. Recent clinical trials and meta-analyses have demonstrated that a precision medicine approach in which loss-of-function carriers are prescribed ticagrelor or prasugrel and noncarriers are prescribed clopidogrel results in reducing ischemic events without increasing bleeding risk. The evidence to date supports CYP2C19 genetic testing before oral P2Y12 inhibitors are prescribed in patients with acute coronary syndromes or percutaneous coronary intervention. Clinical implementation of such genetic testing will depend on among multiple factors: rapid availability of results or adoption of the concept of performing preemptive genetic testing, provision of easy-to-understand results with therapeutic recommendations, and seamless integration in the electronic health record.

3.
Circ Res ; 131(7): 580-597, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36000401

RESUMO

BACKGROUND: ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS: Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS: Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS: Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.


Assuntos
Adenosina Desaminase , Insuficiência Cardíaca , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Inosina/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Camundongos , Camundongos Mutantes , NF-kappa B/metabolismo , RNA
4.
Eur Heart J ; 44(20): 1818-1833, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36469488

RESUMO

AIMS: Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS: JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS: JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Trombose , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Trombose/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
6.
Eur Heart J ; 43(19): 1849-1860, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567560

RESUMO

AIMS: The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its shedding product [soluble LOX-1 (sLOX-1)] are implicated in atherosclerotic cardiovascular disease (ASCVD) pathogenesis. Herein, we examined the relationship of sLOX-1 with both fatal events and plaque progression in patients with acute coronary syndromes (ACS). METHODS AND RESULTS: Plasma sLOX-1 was assessed at baseline in ACS and chronic coronary syndrome (CCS) patients prospectively recruited in the multicentre SPUM-ACS study, with sex- and age-matched healthy subjects serving as additional controls (n = 2924). Compared with both CCS and controls, ACS patients showed markedly elevated sLOX-1 levels (median, 2.00 and 2.00 vs. 35.08 pg/mL; P < 0.0001) which were independently associated with increased mortality risk over 30-day [tertile (T)3: adjusted hazard ratio (HR), 3.11; 95% confidence interval (CI), 1.44-10.61; P = 0.0055] and 1-year intervals (T3: adjusted HR, 2.04; 95% CI, 1.19-3.92; P = 0.0098). Results remained consistent after adjustment for GRACE 2.0 (T3: adjusted HR, 1.86; 95% CI, 1.04-3.74; P = 0.0391) and were primarily driven by the pronounced relationship of sLOX-1 with cardiovascular mortality at 30 days (T3: adjusted HR, 3.81; 95% CI, 1.62-19.62; P = 0.0036) and at 1 year (T3: adjusted HR, 2.29; 95% CI, 1.19-5.34; P = 0.0148). In ACS patients undergoing serial intracoronary imaging and statin therapy, sLOX-1 dropped significantly in those with coronary plaque regression at 1 year (ΔsLOX-1: -4.64 ± 1.80; P = 0.0057), and showed a good discrimination for predicting plaque progression (area under the curve = 0.74; 95% CI, 0.59-0.86; P = 0.0031). CONCLUSION: Plasma sLOX-1 levels are increased during ACS and predict fatal events beyond traditional and emerging risk factors. Persistently high sLOX-1 associates with coronary plaque progression in patients with established ASCVD. CLINICAL TRIAL REGISTRATION: NCT01000701.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Placa Aterosclerótica , Biomarcadores , Humanos , Mortalidade Prematura , Receptores Depuradores Classe E
7.
J Mol Cell Cardiol ; 160: 111-120, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302813

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as critical regulators in human disease including atherosclerosis. However, the mechanisms involved in the post-transcriptional regulation of the expression of disease-associated lncRNAs are not fully understood. Gene expression studies revealed that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) lncRNA expression was increased by >2-fold in peripheral blood mononuclear cells (PBMCs) derived from patients with coronary artery disease (CAD) or in carotid artery atherosclerotic plaques. We observed a linear association between NEAT1 lncRNA expression and prevalence of CAD which was independent of age, sex, cardiovascular traditional risk factors and renal function. NEAT1 expression was induced by TNF-α, while silencing of NEAT1 profoundly attenuated the TNF-α-induced vascular endothelial cell pro-inflammatory response as defined by the expression of CXCL8, CCL2, VCAM1 and ICAM1. Overexpression of the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), but not of its editing-deficient mutant, upregulated NEAT1 levels. Conversely, silencing of ADAR1 suppressed the basal levels and the TNF-α-induced increase of NEAT1. NEAT1 lncRNA expression was strongly associated with ADAR1 in CAD and peripheral arterial vascular disease. RNA editing mapping studies revealed the presence of several inosines in close proximity to AU-rich elements within the AluSx3+/AluJo- double-stranded RNA complex. Silencing of the stabilizing RNA-binding protein AUF1 reduced NEAT1 levels while silencing of ADAR1 profoundly affected the binding capacity of AUF1 to NEAT1. Together, our findings propose a mechanism by which ADAR1-catalyzed A-to-I RNA editing controls NEAT1 lncRNA stability in ASCVD.


Assuntos
Adenosina/metabolismo , Elementos Alu/genética , Aterosclerose/sangue , Doença da Artéria Coronariana/sangue , Inosina/metabolismo , Placa Aterosclerótica/sangue , Edição de RNA/genética , Estabilidade de RNA/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/genética , Sítios de Ligação , Células Cultivadas , Estudos de Coortes , Doença da Artéria Coronariana/genética , Feminino , Inativação Gênica , Ribonucleoproteína Nuclear Heterogênea D0/genética , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção
8.
Clin Immunol ; 226: 108699, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639276

RESUMO

RNA editing is a fundamental biological process with 2 major forms, namely adenosine-to-inosine (A-to-I, recognized as A-to-G) and cytosine-to-uracil (C-to-U) deamination, mediated by ADAR and APOBEC enzyme families, respectively. A-to-I RNA editing has been shown to directly affect the genome/transcriptome of RNA viruses with significant repercussions for viral protein synthesis, proliferation and infectivity, while it also affects recognition of double-stranded RNAs by cytosolic receptors controlling the host innate immune response. Recent evidence suggests that RNA editing may be present in SARS-CoV-2 genome/transcriptome. The majority of mapped mutations in SARS-CoV-2 genome are A-to-G/U-to-C(opposite strand) and C-to-U/G-to-A(opposite strand) substitutions comprising potential ADAR-/APOBEC-mediated deamination events. A single nucleotide substitution can have dramatic effects on SARS-CoV-2 infectivity as shown by the D614G(A-to-G) substitution in the spike protein. Future studies utilizing serial sampling from patients with COVID-19 are warranted to delineate whether RNA editing affects viral replication and/or the host immune response to SARS-CoV-2.


Assuntos
Desaminases APOBEC/metabolismo , Adenosina Desaminase/metabolismo , COVID-19/imunologia , Imunidade Inata , Edição de RNA , Vírus de RNA/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Desaminases APOBEC/genética , Adenosina Desaminase/genética , COVID-19/enzimologia , COVID-19/virologia , Humanos , Mutação , Vírus de RNA/patogenicidade , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/metabolismo
9.
J Autoimmun ; 125: 102755, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857436

RESUMO

OBJECTIVE: Adenosine deaminase acting on RNA-1 (ADAR1) enzyme is a type I interferon (IFN)-stimulated gene (ISG) catalyzing the deamination of adenosine-to-inosine, a process called A-to-I RNA editing. A-to-I RNA editing takes place mainly in Alu elements comprising a primate-specific level of post-transcriptional gene regulation. Whether RNA editing is involved in type I IFN responses in systemic sclerosis (SSc) patients remains unknown. METHODS: ISG expression was quantified in skin biopsies and peripheral blood mononuclear cells derived from SSc patients and healthy subjects. A-to-I RNA editing was examined in the ADAR1-target cathepsin S (CTSS) by an RNA editing assay. The effect of ADAR1 on interferon-α/ß-induced CTSS expression was assessed in human endothelial cells in vitro. RESULTS: Increased expression levels of the RNA editor ADAR1, and specifically the long ADAR1p150 isoform, and its target CTSS are strongly associated with type I IFN signature in skin biopsies and peripheral blood derived from SSc patients. Notably, IFN-α/ß-treated human endothelial cells show 8-10-fold increased ADAR1p150 and 23-35-fold increased CTSS expression, while silencing of ADAR1 reduces CTSS expression by 60-70%. In SSc patients, increased RNA editing rate of individual adenosines located in CTSS 3' UTR Alu elements is associated with higher CTSS expression (r = 0.36-0.6, P < 0.05 for all). Similar findings were obtained in subjects with activated type I IFN responses including SLE patients or healthy subjects after influenza vaccination. CONCLUSION: ADAR1p150-mediated A-to-I RNA editing is critically involved in type I IFN responses highlighting the importance of post-transcriptional regulation of proinflammatory gene expression in systemic autoimmunity, including SSc.


Assuntos
Interferon Tipo I , Escleroderma Sistêmico , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Inosina/genética , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , RNA , Edição de RNA , Proteínas de Ligação a RNA/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo
10.
Rheumatology (Oxford) ; 60(4): 1669-1675, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027516

RESUMO

OBJECTIVE: Amyloid-beta1-40 (Aß40) is a pro-inflammatory peptide under investigation as a novel biomarker of vascular inflammation, endothelial dysfunction and atherothrombosis in the general population. Herein we tested the hypothesis that Aß40 is deregulated in APS, a systemic autoimmune disease characterized by a thrombo-inflammatory state. METHODS: Between January 2016 and July 2017, we consecutively recruited 80 regularly followed thrombotic APS patients (44 primary, 36 SLE/APS) and 80 age- and sex-matched controls. Plasma Aß40 levels were measured using ELISA and APS-related clinical and laboratory characteristics were recorded. The adjusted Global Anti-Phospholipid Syndrome Score (aGAPSS), a validated risk score in APS, was calculated as a comparator to Aß40 performance to detect arterial thrombotic APS-related events. RESULTS: Higher Aß40 levels were significantly associated with the presence of APS [odds ratio (OR) 1.024 per 1 pg/ml (95% CI 1.007, 1.041)] after adjustment for cardiovascular risk factors (CVRFs), including smoking, arterial hypertension, dyslipidaemia and BMI, and for estimated glomerular filtration rate (eGFR). Among APS patients, increased high-sensitivity CRP (hs-CRP) serum levels was the only independent determinant of Aß40 levels. Importantly, Aß40 levels above the optimal receiver operating characteristics (ROC)-derived cut-off value were independently associated with recurrent arterial events [OR 4.93 (95% CI 1.31, 18.51)] after adjustment for age, sex, CVRFs, hs-CRP and high anti-ß2 glycoprotein I IgG titres. Finally, by ROC curve analysis, Aß40 provided incremental additive value over the aGAPSS by significantly improving its discrimination ability for recurrent arterial thromboses. CONCLUSION: In APS, Aß40 plasma levels are elevated and associated with an adverse thrombo-inflammatory profile. The pathophysiological and prognostic role of Aß40 in APS merits further investigation.


Assuntos
Peptídeos beta-Amiloides/sangue , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/complicações , Fragmentos de Peptídeos/sangue , Trombose/etiologia , Adulto , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Trombose/sangue
11.
Circ Res ; 125(8): 744-758, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31401949

RESUMO

Rationale: Cardiac involvement and hypotension dominate the prognosis of light-chain amyloidosis (AL). Evidence suggests that there is also peripheral vascular involvement in AL but its prognostic significance is unknown. Objective: To evaluate vascular dysfunction in patients with AL as a potential future area of intervention, we assessed the prognostic utility of flow-mediated dilatation (FMD), a marker of vascular reactivity, which is augmented under conditions of hypotension and autonomic dysfunction. Methods and Results: We prospectively evaluated 115 newly diagnosed untreated AL patients in whom FMD was measured. FMD in AL patients was significantly higher than age-, sex- and risk factors-matched controls (4.0% versus 2.32%; P=0.006) and comparable with control groups at lower cardiovascular risk (P>0.1). Amyloidosis patients presented increased plasma and exhaled markers of the NO pathway while their FMD significantly correlated with augmented sustained vasodilatation after sympathetic stimulation. Increased FMD (≥4.5%) was associated with early mortality (hazard ratio, 4.36; 95% CI, 1.41-13.5; P=0.010) and worse survival (hazard ratio, 2.11; 95% CI, 1.17-3.82; P=0.013), even after adjustment for Mayo stage, nerve involvement and low systolic blood pressure. This finding was confirmed in a temporal validation AL cohort (n=55; hazard ratio, 4.2; 95% CI, 1.45-12.3; P=0.008). FMD provided significant reclassification value over the best prognostic model (continuous Net Reclassification Index, 0.61; P=0.001). Finally, better hematologic response was associated with lower posttreatment FMD. Conclusions: FMD is relatively increased in AL and independently associated with inferior survival with substantial reclassification value. Reactive vasodilation merits further investigation as a novel risk biomarker in AL.Visual Overview: An online visual overview is available for this article.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina/fisiopatologia , Vasodilatação , Idoso , Pressão Sanguínea , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico por imagem , Amiloidose de Cadeia Leve de Imunoglobulina/mortalidade , Fluxometria por Laser-Doppler , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Taxa de Sobrevida
12.
J Autoimmun ; 106: 102329, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493964

RESUMO

OBJECTIVE: Adenosine-to-inosine (A-to-I) RNA editing of Alu retroelements is a primate-specific mechanism mediated by adenosine deaminases acting on RNA (ADARs) that diversifies transcriptome by changing selected nucleotides in RNA molecules. We tested the hypothesis that A-to-I RNA editing is altered in rheumatoid arthritis (RA). METHODS: Synovium expression analysis of ADAR1 was investigated in 152 RA patients and 50 controls. Peripheral blood mononuclear cells derived from 14 healthy subjects and 19 patients with active RA at baseline and after 12-week treatment were examined for ADAR1p150 and ADAR1p110 isoform expression by RT-qPCR. RNA editing activity was analysed by AluSx+ Sanger-sequencing of cathepsin S, an extracellular matrix degradation enzyme involved in antigen presentation. RESULTS: ADAR1 was significantly over-expressed in RA synovium regardless of disease duration. Similarly, ADAR1p150 isoform expression was significantly increased in the blood of active RA patients. Individual nucleotide analysis revealed that A-to-I RNA editing rate was also significantly increased in RA patients. Both baseline ADAR1p150 expression and individual adenosine RNA editing rate of cathepsin S AluSx+ decreased after treatment only in those patients with good clinical response. Upregulation of the expression and/or activity of the RNA editing machinery were associated with a higher expression of edited Alu-enriched genes including cathepsin S and TNF receptor-associated factors 1,2,3 and 5. CONCLUSION: A previously unrecognized regulation and role of ADAR1p150-mediated A-to-I RNA editing in post-transcriptional control in RA underpins therapeutic response and fuels inflammatory gene expression, thus representing an interesting therapeutic target.


Assuntos
Adenosina/genética , Artrite Reumatoide/genética , Inosina/genética , Edição de RNA/genética , RNA/genética , Adenosina Desaminase/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
13.
Br J Clin Pharmacol ; 86(7): 1387-1397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32067256

RESUMO

AIMS: Following a favourable pilot trial using a single bolus of ciclosporin, it has been unclear why 2 large studies (CYCLE and CIRCUS) failed to prevent reperfusion injury and reduce infarct size in STEMI (ST elevation myocardial infarction). The purpose of this study was to assess the effect of ciclosporin on myocardial injury, left ventricular remodelling and lymphocyte kinetics in patients with acute STEMI undergoing primary percutaneous coronary intervention. METHODS: In this double-blind, single centre trial, we randomly assigned 52 acute STEMI patients with an onset of pain of <6 hours and blocked culprit artery to a single bolus of ciclosporin (n = 26) or placebo (n = 26, control group) prior to reperfusion by stent percutaneous coronary intervention. The primary endpoint was infarct size at 12 weeks. RESULTS: Mean infarct size at 12 weeks was identical in both groups (9.1% [standard deviation= 7.0] vs 9.1% [standard deviation = 7.0], P = .99; 95% confidence interval for difference: -4.0 to 4.1). CD3 T-lymphocytes dropped to similar levels at 90 minutes (867 vs 852 cells/µL, control vs ciclosporin) and increased to 1454 vs 1650 cells/µL at 24 hours. CONCLUSION: In our pilot trial, a single ciclosporin bolus did not affect infarct size or left ventricular remodelling, matching the results from CYCLE and CIRCUS. Our study suggests that ciclosporin does either not reach ischaemic cardiomyocytes, or requires earlier application during first medical contact. Finally, 1 bolus of ciclosporin is not sufficient to inhibit CD4 T-lymphocyte proliferation during remodelling. We therefore believe that further studies are warranted. (Evaluating the effectiveness of intravenous Ciclosporin on reducing reperfusion injury in pAtients undergoing PRImary percutaneous coronary intervention [CAPRI]; NCT02390674).


Assuntos
Ciclosporina , Infarto do Miocárdio , Ciclosporina/uso terapêutico , Método Duplo-Cego , Humanos , Cinética , Linfócitos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/tratamento farmacológico , Resultado do Tratamento , Remodelação Ventricular
15.
J Mol Cell Cardiol ; 129: 272-280, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30880252

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death in the Western world. Despite advances in the prevention and in the management of CVD, the role of RNA epigenetics in the cardiovascular system has been until recently unexplored. The rapidly expanding research field of RNA modifications has introduced a novel layer of gene regulation in mammalian cells. RNA modifications may control all aspects of RNA metabolism, and their study reveals previously unrecognized regulatory pathways that may determine gene expression at a post-transcriptional level. Understanding the role of RNA modifications in CVD may lead towards a better understanding of disease mechanisms and the development of novel biomarkers or therapeutic strategies. In this review, we highlight the most recent and major reports in the field of RNA methylation and adenosine to inosine RNA editing related to the cardiovascular field and we discuss how this breakthrough will advance the field of precision medicine.


Assuntos
Doenças Cardiovasculares/genética , Epigênese Genética , RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação de DNA/genética , Humanos , RNA/metabolismo , Edição de RNA/genética
16.
Cytokine ; 122: 154157, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29198385

RESUMO

Platelets are inflammatory anuclear cells with a well-established role in the development and manifestation of atherosclerosis. Activated platelets secrete a plethora of chemokines including CXCL4 or platelet factor 4 (PF4), CCL5, CXCL12 or stromal cell derived factor-1α (SDF-1α), CXCL16 and others, which initiate or promote local inflammatory processes at sites of vascular injury. These processes are mainly mediated by the recruitment of circulating haematopoietic stem cells, neutrophils, monocytes or lymphocytes on vascular wall. Under acute ischemic conditions platelet-derived chemokines may promote the mobilization of bone marrow-derived progenitor cells and their homing at lesion sites. This review focuses on the role of platelet-derived chemokines in inflammation and atherosclerosis. Further, we discuss the clinical value of plasma levels of chemokines in the prognosis of atherosclerotic heart disease.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL16/metabolismo , Doença da Artéria Coronariana/metabolismo , Humanos , Inflamação/imunologia , Monócitos/metabolismo , Ativação Plaquetária/imunologia , Fator Plaquetário 4/metabolismo , Fatores de Risco
17.
Platelets ; 30(3): 314-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29451832

RESUMO

CD34+ cells expressing KDR (CD34+/KDR+) represent a small proportion of circulating progenitor cells that have the capacity to interact with platelets and to differentiate into mature endothelial cells, thus contributing to vascular homeostasis and regeneration as well as to re-endothelialization. We investigated the levels of CD34+ and CD34+/KDR+ progenitor cells as well as their interaction with platelets in acute coronary syndrome (ACS) patients before the initiation (baseline) of their treatment with a P2Y12 receptor antagonist, and at 5-days post-treatment (follow-up). Sixty-seven consecutive ACS patients and thirty healthy subjects (controls) participated in the study. On admission, all patients received 325 mg aspirin, followed by 100 mg/day and then were loaded either with 600 mg clopidogrel or 180 mg ticagrelor, followed by 75 mg/day (n = 36) or 90 mg × 2/day (n = 31), respectively. The levels of circulating CD34+ and CD34+/KDR+ progenitor cells, as well as their interaction with platelets, were determined by flow cytometry, before and after activation with ADP, in vitro. The circulating levels of CD34+ and CD34+/KDR+ cells in both patient groups at baseline were lower compared with controls while they were significantly increased at 5-days of follow-up in both groups, this increase being more pronounced in the ticagrelor group. The platelet/CD34+ (CD61+/CD34+) conjugates were higher at baseline and reduced at follow-up while the platelet/KDR+ (CD61+/KDR+) conjugates were lower at baseline and increased at follow-up, both changes being more pronounced in the ticagrelor group. ADP activation of control samples significantly increased the KDR expression by CD34+ cells and the CD61+/KDR+ conjugates, these parameters being unaffected in patients at baseline but increased at follow-up. Short-term dual antiplatelet therapy in ACS patients restores the low platelet/KDR+ conjugates and CD34+ cell levels and improves the low membrane expression levels of KDR in these cells, an effect being more pronounced in ticagrelor-treated patients. This may represent a pleiotropic effect of antiplatelet therapy towards vascular endothelial regeneration.


Assuntos
Síndrome Coronariana Aguda/sangue , Plaquetas/metabolismo , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Células-Tronco/metabolismo , Ticagrelor/uso terapêutico , Clopidogrel/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/farmacologia , Ticagrelor/farmacologia
18.
Ann Intern Med ; 168(12): 855-865, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799975

RESUMO

Background: Amyloid-ß (1-40) (Aß40) is implicated in mechanisms related to plaque destabilization and correlates with adverse outcomes in stable coronary artery disease. Objective: To determine the prognostic and reclassification value of baseline circulating levels of Aß40 after adjustment for the Global Registry of Acute Coronary Events (GRACE) score, which is widely recommended for risk stratification in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Design: Retrospective cohort study using data from 2 independent prospective cohorts, the Heidelberg study (n = 1145) and the validation multicenter international APACE (Advantageous Predictors of Acute Coronary Syndrome Evaluation) study (n = 734). Setting: Academic hospitals in 7 European countries. Participants: Patients with adjudicated NSTE-ACS followed for a median of 21.9 and 24.9 months in the Heidelberg and APACE studies, respectively. Measurements: All-cause mortality was the primary end point. Results: Amyloid-ß (1-40) was associated with mortality after multivariate adjustment for age, sex, diabetes mellitus, high-sensitivity cardiac troponin T and C-reactive protein, revascularization, and ACS type (Heidelberg cohort hazard ratio [HR] for 80th vs. 20th percentiles, 1.66 [95% CI, 1.06 to 2.61; P = 0.026]; APACE cohort HR, 1.50 [CI, 1.15 to 1.96; P = 0.003]). It was also associated with mortality after adjustment for the GRACE score (Heidelberg cohort HR for 80th vs. 20th percentiles, 1.11 [CI, 1.04 to 1.18; P = 0.001]; APACE cohort HR, 1.39 [CI, 1.02 to 1.88; P = 0.036]). Amyloid-ß (1-40) correctly reclassified risk for death over the GRACE score (net reclassification index, 33.4% and 47.1% for the Heidelberg and APACE cohorts, respectively) (P < 0.05). Limitation: At low concentrations of Aß40, dose-response associations with mortality differed between cohorts, possibly because of varying blood preparations used to measure Aß40. Conclusion: Circulating Aß40 is a predictor of mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score recommended by clinical guidelines. The clinical application of Aß40 as a novel biomarker in NSTE-ACS should be further explored and validated. Primary Funding Source: German Cardiac Society.


Assuntos
Síndrome Coronariana Aguda/mortalidade , Peptídeos beta-Amiloides/sangue , Fragmentos de Peptídeos/sangue , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Fatores de Risco
19.
Circulation ; 136(1): 65-79, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28351900

RESUMO

BACKGROUND: The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs. METHODS: Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression. RESULTS: A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of Macaca fascicularis subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as SOX18, SMAD6, and COUP-TFII was regulated by ensuring efficient RNA polymerase II machinery binding. CONCLUSION: MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Epigênese Genética/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Microvasos/fisiologia , Neovascularização Fisiológica/fisiologia , RNA Longo não Codificante/biossíntese , Animais , Linhagem Celular , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Histona Desmetilases com o Domínio Jumonji/biossíntese , Histona Desmetilases com o Domínio Jumonji/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos SCID , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética
20.
J Vasc Res ; 55(1): 13-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29197873

RESUMO

BACKGROUND/AIMS: Platelets affect endothelial progenitor cell (EPC) functionality, inducing their differentiation into mature endothelial cells. However, it remains to be established whether EPCs can influence platelet functionality. METHODS: Mononuclear proangiogenic cells (MPCs) and early outgrowth cells (EOCs) were prepared from peripheral blood mononuclear cells, whereas late-outgrowth endothelial cells (OECs) were prepared from cord blood CD34+ cells. The effect of the above cells and their supernatants on washed platelet aggregation was studied. The effect of OECs and their supernatant on the adenosine diphosphate (ADP)-induced magnitude of platelet integrin receptor αIIbß3 activation and on P-selectin membrane expression was investigated. The levels of nitric oxide (NO) and prostacyclin (PGI2) that were secreted from EOCs, OECs, and human umbilical vein endothelial cells (HUVECs) were also assessed. RESULTS: Among all progenitors, OECs and their supernatant exhibited the most potent inhibitory activity towards platelet aggregation. Furthermore, OECs and their supernatant, but not CD34+ cells, reduced αIIbß3 activation and P-selectin membrane expression. Finally, OECs secreted higher NO and PGI2 levels than EOCs did. CONCLUSION: The anti-platelet effect of EPCs depends highly on the degree of their endothelial phenotype, with OECs expressing the highest potency. Therefore, the induction of OEC generation and the enhancement of their functionality in vivo could be a new approach for the treatment of patients at a high thrombotic risk.


Assuntos
Antígenos CD34/metabolismo , Plaquetas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Agregação Plaquetária , Adulto , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Epoprostenol/metabolismo , Feminino , Sangue Fetal/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Selectina-P/metabolismo , Fenótipo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Gravidez , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA